1. 연립방정식 $\begin{cases} x + 2y = 3a \cdots \bigcirc \\ 4x - y = 3 \cdots \bigcirc \end{cases}$ 을 만족하는 y 의 값이 5 일 때, a 의 값을 구하여라.

____ __의에 y = 5를 대입하면,

$$\begin{cases} 2x - 1 > -5 \\ x + 2 \ge 4x - 1 \end{cases}$$

①
$$x > -2$$
④ $-2 < x \le 1$

다음 연립부등식을 풀면?

② $x \le 1$

해설
$$\begin{cases} 2x - 1 > -5 \\ x + 2 \ge 4x - 1 \end{cases} \Rightarrow -2 < x \le 1$$

$$3 -2 \le x < 1$$

다음 그림은 일차함수 y = ax + b 의 그래프이다. 이 때, a, b 의 부호는?

①
$$a < 0, b < 0$$

$$< 0$$
 ② $a < 0, b > 0$

③
$$a > 0, b < 0$$
 ④ $a > 0, b > 0$ ⑤ $a > 0, b = 0$

기울기는 오른쪽 위를 향하므로 양수이고, y 절편은 음수이다.

$$\therefore a > 0, \ b < 0$$

4. 일차방정식
$$x-ay-2=0$$
 과 $3x-2y+5=0$ 의 그래프가 서로 평행일 때, 상수 a 의 값은?

①
$$\frac{1}{3}$$
 ② $\frac{1}{2}$ ③ $\frac{3}{3}$ ④ $\frac{3}{2}$ ⑤ $\frac{5}{2}$

평행하면 기울기가 같으므로
$$\frac{1}{3} = \frac{-a}{-2} \neq \frac{-2}{5},$$

$$\frac{1}{3} = \frac{a}{2}, a = \frac{2}{3}$$

5.
$$\left(-\frac{x^5z^a}{y^bz^3}\right)^2 = \frac{x^c}{y^4z^2}$$
 일 때, $a + b + c$ 의 값은?

$$\frac{x^{10}z^{2a}}{y^{2b}z^{6}} = \frac{x^{c}}{y^{4}z^{2}}$$

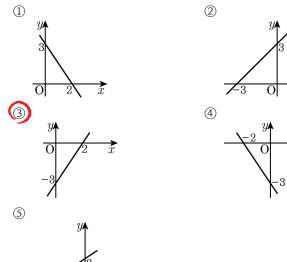
$$6 - 2a = 2 \quad \therefore a = 2$$

$$2b = 4 \quad \therefore b = 2$$

$$c = 10$$

$$\therefore a + b + c = 14$$

 $(x+a)(x-3) = x^2 - b^2 일 때, a+b 의 값은? (단, b > 0)$


$$(x+a)(x-3) = x^2 + (a-3)x - 3a = x^2 - b^2$$

$$a-3 = 0 ○ □ □ ∃ a = 3$$

$$b^2 = 3a = 9$$

$$b = 3 (∵ b > 0)$$
∴ $a+b=6$

7. 다음 중 x, y의 값이 수 전체일 때, 일차방정식 3x - 2y - 6 = 0 의 그래프는?

해설

(2,0), (0,-3)이 일차방정식
$$3x - 2y - 6 = 0$$
의 해이므로 그래
프는 ③과 같다.

8. 연립방정식 $\begin{cases} x - 2y = 7 \\ 2x - 3y = m \end{cases}$ 를 만족하는 x 의 값과 y 의 값의 차가 5 일 때, 상수 m 의 값은? (단, x > y)

①
$$-12$$
 ② -6 ③ 4 ④ 6 ⑤ 12

9. 3x + 2 < 2(x + 3) 를 풀 때, 만족하는 자연수의 개수를 구하여라.

- <u>개</u>
- ▷ 정답: 3개

3x + 2 < 2x + 63x - 2x < 6 - 2x < 4

따라서 만족하는 자연수는 $1,\ 2,\ 3$ 의 3 개이다.

- **10.** ax + 6 > 0 의 해가 x < 3 일 때, a 의 값을 구하여라.
 - ▶ 답:
 - ▷ 정답: a = -2

ax + 6 > 0, ax > -6 $x < -\frac{6}{a}$ 은 x < 3이므로

$$-\frac{6}{a}=3$$
 이다.

 $\therefore a = -2$

11. 일차부등식 9 < 2x - 5와 -1 < 2x + 3a의 해가 같을 때, 상수 a의 값을 구하여라.

 $9 < 2x - 5 \implies 14 < 2x \implies x > 7$

$$\Rightarrow 14 < 2x \Rightarrow x$$

 $-1 < 2x + 3a \implies -1 - 3a < 2x \implies x > \frac{-1 - 3a}{2}$

 $7 = \frac{-1 - 3a}{2} \implies 15 = -3a \implies a = -5$ 이다.

12. 다음 중 소수점 아래 67번째 자리의 숫자가 가장 큰 것은?

 $\bigcirc 5.\dot{4}$

② $0.\dot{3}\dot{8}$

 $3 -1.\dot{2}8\dot{3}$

(4) $-2.57\dot{1}$

 $4.74\dot{5}$

- ① $67 = 1 \times 67$ 이므로 $\rightarrow 4$ ② $67 = 2 \times 33 + 1$ 이므로 $\rightarrow 3$
- ③ 67 = 3×22+1이므로 → 2
- ④ $67 1 = 2 \times 33$ 이므로 $\rightarrow 1$
- ⑤ 67 2 = 1 × 65 이므로 → 5

①
$$0.\dot{9} = 1$$

②
$$0.2\dot{3}\dot{4} = \frac{116}{495}$$
 ③ $\frac{3^4}{2^2 \times 3 \times 5 \times 7}$ 은 유한소수로 나타낼 수 있다.

$$0.250250250\cdots = 0.250$$

③
$$\frac{3^4}{2^2 \times 3 \times 5 \times 7} = \frac{3^3}{2^2 \times 5 \times 7}$$
 이므로 무한소수로 나타내어 진다.

14. 다음 중 계산 결과가 옳지 <u>않은</u> 것은?

①
$$(-2xy^2) \times (3x)^2 \div (6y)^2 = -\frac{x^3}{2}$$

②
$$14a^2 \div (-2b^2)^2 \times (2ab^2)^2 = 14a^4$$

③ $\left(\frac{2}{3}a^2\right)^2 \times (3b^2)^2 \div (4ab^2)^2 = \frac{a^2}{4}$

$$(-4x^2y) \div \left(-\frac{2}{3}y^2\right) \times (2xy^2)^3 = 48x^5y^5$$

①
$$(-2xy^2) \times 9x^2 \times \frac{1}{36y^2} = -\frac{x^3}{2}$$

$$2 14a^2 \div 4b^4 \times 4a^2b^4 = 14a^4$$

$$3 \frac{4}{9}a^4 \times 9b^4 \times \frac{1}{16a^2b^4} = \frac{a^2}{4}$$

$$4 (10a)^2 \times (-ab^2)^2 \div \left(-\frac{1}{3}ab^2\right)^2$$

$$= 100a^2 \times a^2b^4 \div \frac{1}{9}a^2b^4 = 900a^2$$

⑤
$$(-4x^2y) \times \left(-\frac{3}{2y^2}\right) \times 8x^3y^6 = 48x^5y^5$$

15. 연립방정식 ax + y = 8, x + 2y = b 의 해가 (3, 2) 일 때, ab 의 값을 구하여라.

 $\therefore ab = 14$

각각의 식에 x = 3, y = 2 를 대입하면

$$3a + 2 = 8$$
 : $a = 2$
 $3 + 4 = b$: $b = 7$

16. 다음 두 직선이 한 점에서 만나는 것을 모두 고르면?

 $\bigcirc \begin{cases}
4x + y = 1 \\
4x + y = -1
\end{cases}$ $\bigcirc \begin{cases}
y = 3x \\
y = -3x + 1
\end{cases}$ $\bigcirc \begin{cases}
x - y = 3 \\
3x - 3y = 6
\end{cases}$ $\bigcirc \begin{cases}
5x + y = 1 \\
5x - y = 1
\end{cases}$

- 답
- ▶ 답:
- ▷ 정답: ⑤
- ▷ 정답: ②

해설

두 직선이 한 점에서 만나는 것은 두 직선의 기울기가 다르다는 것이다. 따라서 기울기가 다른 것을 찾는다.

따라서 ① $\begin{cases} y = 3x \\ y = -3x + 1 \end{cases} \stackrel{\circ}{\leftarrow} \begin{cases} 3x - y = 0 \\ -3x - y = -1 \end{cases}$ 이므로 $\frac{3}{-3} \neq$

 $\frac{-1}{-1}$ 가 되어 기울기가 다르다.

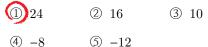
(a) $\begin{cases} 5x + y = 1 \\ 5x - y = 1 \end{cases}$ 에서 $\frac{5}{5} \neq \frac{1}{-1}$ 이므로 기울기가 다르다.

17. (x+A)(x+B) 를 전개하였더니 x^2+Cx-3 이 되었다. 다음 중 C 의 값이 될 수 있는 것은?(단, A, B, C 는 정수이다.)

18. 연립방정식 $\begin{cases} ax + by = 16 & \cdots \\ x - ay = 14 & \cdots \end{cases}$ 을 푸는데 잘못하여 식의 a, b = 0

바꾸어 놓고 풀었더니 x = 4, y = -2 이 되었다. 이 때, b - 2a 의 값을 구하여라.

▶ 답:


▷ 정답: 1

x = 4, y = -2 는 $\begin{cases} bx + ay = 16 & \cdots \\ x - by = 14 & \cdots \end{cases}$ 의 해 이므로 대입하면 $\begin{cases} 4b - 2a = 16 & \cdots \end{cases}$

 $\begin{cases} 4b - 2a = 16 & \cdots \\ 4 + 2b = 14 & \cdots \end{cases}$ 이다.

 \bigcirc 식에서 b=5 이고 이를 \bigcirc 식에 대입하면 a=2 이다. 따라서 b-2a=5-4=1 이다.

19. 다음 그림에서 점 A, B는 직선
$$\frac{x}{a} + \frac{y}{b} = 1$$
과 x 축, y 축과의 교점이다. \triangle BOA의 넓이가 12일 때, ab 의 값을 구하면?

$$x$$
절편 a, y 절편 b 이므로
 $\triangle BOA = a \times b \times \frac{1}{2} = 12$

 $\therefore ab = 24$

$$= 24$$

20. 세 직선 $\begin{cases} y = -\frac{1}{3}x + 2 \\ y = x - 2 \end{cases}$ 가 삼각형을 이루지 않을 때, 모든 a 의 값의 y = ax + 4

합을 구하면?

①
$$\frac{2}{3}$$
 ② $-\frac{4}{3}$ ③ $\frac{4}{3}$ ④ 1 ⑤ $-\frac{1}{3}$

$$y = ax + 4$$
 가
$$(\neg) y = -\frac{1}{3}x + 2 와 평행이거나,$$

세 직선으로 삼각형이 생기지 않는 경우는

(L) y = x - 2 와 평행이거나

각각의 경우 $a = -\frac{1}{3}, 1, -1$ $\therefore -\frac{1}{3} + 1 - 1 = -\frac{1}{3}$

$$\frac{1}{3}$$
, 1, -1