1. 다음 중 $(x-y)^2(x+y)^2$ 을 전개한 식은?

②
$$x^2 - y^2$$

$$3x^4 - 2x^2y^2 + y^4$$
$$x^4 - 4x^2y^2 + y^4$$

$$(x-y)^{2}(x+y)^{2} = \{(x-y)(x+y)\}^{2}$$
$$= (x^{2}-y^{2})^{2}$$
$$= x^{4} - 2x^{2}y^{2} + y^{4}$$

2. (a-b+c)(a-b-c)를 전개하면?

- ① $-a^2 + b^2 c^2 + 2ca$ $3 a^2 + b^2 + c^2 + abc$
- ② $a^2 b^2 + c^2 + 2ab$
- \bigcirc $a^2 + b^2 c^2 2ab$

해설

$$(a-b+c) (a-b-c)$$
= $\{(a-b)+c\}\{(a-b)-c\}$
= $(a-b)^2-c^2$
= $a^2+b^2-c^2-2ab$

$$= ((a - b)^{2} + c)((a - b)^{2})$$

$$= (a - b)^{2} - c^{2}$$

$$=a^2+b^2-c^2-$$

3. 다항식 $(x^2 + 2x - 3)(3x^2 + x + k)$ 의 전개식에서 일차항의 계수가 15일 때, 상수 k의 값은?

- ① -3 ② 0 ③ 3 ④ 6

해설

상수항과 일차항만의 곱을 구하면, -3x + 2kx = 15x

 $\therefore k = 9$

4. x + y = 4, xy = 3일 때, $x^2 - xy + y^2$ 의 값을 구하여라.

 답:

 ▷ 정답:
 7

$$x^2 - xy + y^2 = (x+y)^2 - 3xy = 7$$

5. x+y+z=3, xy+yz+zx=-1 일 때 $x^2+y^2+z^2$ 의 값을 구하면?

① 11 ② 12 ③ 13 ④ 14 ⑤ 15

 $x^{2} + y^{2} + z^{2} = (x + y + z)^{2} - 2(xy + yz + xz)$ = 9 + 2 = 11

- 6. 다음 곱셈공식을 전개한 것 중 바른 것은?
 - ① $(x-y-1)^2 = x^2 + y^2 + 1 2xy 2x 2y$ $(a+b)^2(a-b)^2 = a^4 - 2a^2b^2 + b^4$
 - $(-x+3)^3 = x^3 9x^2 + 27x 27$
 - $(a-b)(a^2+ab-b^2) = a^3-b^3$
 - ⑤ $(p-1)(p^2+1)(p^4+1) = p^{16}-1$
 - ① $(x-y-1)^2 = x^2 + y^2 + 1 2xy 2x + 2y$ ③ $(-x+3)^3 = -x^3 + 9x^2 27x + 27$

해설

- $(a-b)(a^2+ab+b^2) = a^3-b^3$
- $(5)(p-1)(p+1)(p^2+1)(p^4+1) = p^8-1$

7. 다음 중 다항식의 전개가 <u>잘못</u>된 것은?

- ① $(x+1)(x^2-x+1) = x^3+1$
- ② $(a+2b-3c)^2 = a^2+4b^2+9c^2+4ab-12bc-6ac$ $(x+2)(x^2-2x+4) = x^3+8$
- $(x^2 xy + y^2) (x^2 + xy + y^2) = x^4 x^2y^2 + y^4$

$$(x - xy + y)(x + xy + y) = x - x y + y$$

$$(x - 1)^{2}(x + 1)^{2} = x^{4} - 2x^{2} + 1$$

해설

- 8. $(x^3 + ax + 2)(x^2 + bx + 2)$ 를 전개했을 때, x^2 과 x^3 의 계수를 모두 0이 되게 하는 상수 a, b에 대하여 a + b의 값은?
 - ① -2 ② -1 ③ 1 ④ 2 ⑤ $\frac{3}{2}$

해설 $(x^3 + ax + 2)(x^2 + bx + 2)$ $= x^5 + bx^4 + (a+2)x^3 + (ab+2)x^2 + (2a+2b)x + 4$ $(x^2 의 계수) = (x^3 의 계수) = 0 이므로$ ab+2=0, a+2=0따라서 a=-2, b=1 $\therefore a+b=-1$

 $(2x^3 - 3x^2 + 3x + 4)(3x^4 + 2x^3 - 2x^2 - 7x + 8)$ 을 전개한 식에서 x^3 9. 의 계수는?

① 31

- ② 33 ③ 35 ④ 37
- **(5)** 39

 $2x^3 \times 8 - 3x^2 \times (-7x) + 3x \times (-2x^2) + 4 \times 2x^3 = 39x^3$

10.
$$a^2 + b^2 + c^2 = 9$$
, $ab + bc + ca = 9$, $a + b + c \stackrel{\triangle}{=} ?$

- ① $-3\sqrt{2}$ ② $-2\sqrt{3}$
- 3 ±3 $\sqrt{3}$
- ④ $\pm 3\sqrt{2}$

해설

⑤ $\sqrt{6}$

=9+18=27

 $(a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab+bc+ca)$

 $\therefore a+b+c=\pm 3\sqrt{3}$

11. x + y + z = 1, xy + yz + zx = 2, xyz = 3 일 때, (x + 1)(y + 1)(z + 1) 의 값을 구하여라.

▶ 답:

➢ 정답: 7

해설

(x+1)(y+1)(z+1)= xyz + xy + yz + zx + x + y + z + 1= 7

- **12.** (x-1)(x+2)(x-3)(x+4)를 전개할 때, 각 항의 계수의 총합을 a, 상수항을 b라 할 때, a+b의 값을 구하면?
 - ① 8 ② 15
- ③ 24 ④ 36 ⑤ 47

해설

$$(x-1)(x+2)(x-3)(x+4)$$

$$= (x^2+x-2)(x^2+x-12)(x^2+x=X(치))$$

$$= (X-2)(X-12)$$

$$= (X-2)(X-12)$$

$$X^2 = 14X + 24$$

- $=X^2-14X+24$ $= (x^2 + x)^2 - 14(x^2 + x) + 24$
- $= x^4 + 2x^3 13x^2 14x + 24$
- $\therefore \ a = 1 + 2 13 14 + 24 = 0, \ b = 24$ $\therefore a+b=0+24=24$

⊙ 각 항 계수의 총합 구하기

해설

- x = 1 대입, a = 0
- ⓒ 상수항 구하기
- x = 0대입, b = 24

- 13. $(a+b)(a^2-ab+b^2)(a^3-b^3)$ 의 전개식으로 옳은 것은?

 - ① $a^3 + b^3$ ② $a^6 + b^6$ $\textcircled{4} \ a^9 + b^9$ $\textcircled{5} \ a^9 - b^9$
- $3a^6 b^6$

(준식)= $(a^3 + b^3)(a^3 - b^3) = a^6 - b^6$

14. $P = (2+1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)$ 의 값을 구하면?

① $2^{32} - 1$ ② $2^{32} + 1$ ③ $2^{31} - 1$ $\textcircled{4} \ 2^{31} + 1$ $\textcircled{5} \ 2^{17} - 1$

해설

주어진 식에 (2-1)=1을 곱해도 식은 성립하므로 $P = (2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)$ $= (2^2 - 1)(2^2 + 1)(2^4 + 1)(2^8 + 1)(2^16 + 1)$ $= (2^4 - 1)(2^4 + 1)(2^8 + 1)(2^{16} + 1)$ $= (2^{16} - 1)(2^{16} + 1)$ $= 2^{32} - 1$

- **15.** 두 다항식 $(1+x+x^2+x^3)^3$, $(1+x+x^2+x^3+x^4)^3$ 의 x^3 의 계수를 각각 a, b라 할 때, a - b의 값은?

 - ① $4^3 5^3$ ② $3^3 3^4$
- 30
- 4 1
- ⑤ -1

두 다항식이 $1+x+x^2+x^3$ 을 포함하고 있으므로 $1+x+x^2+x^3=$

해설

A 라 놓으면 $(1 + x + x^2 + x^3 + x^4)^3$

 $= (A + x^4)^3$

- $= A^3 + 3A^2x^4 + 3Ax^8 + x^{12}$
- $= A^3 + (3A^2 + 3Ax^4 + x^8)x^4$
- 이 때 $(3A^2 + 3Ax^4 + x^8)x^4$ 은 x^3 항을 포함하고 있지 않으므로 두 다항식의 x^3 의 계수는 같다.
- $\therefore a b = 0$

- **16.** $(-2x^3 + x^2 + ax + b)^2$ 의 전개식에서 x^3 의 계수가 -8일 때, a 2b의 값은?

 - ① -6 ② -4 ③ -2 ④ 0 ⑤ 2

전개할 때 삼차항은 일차항과 이차항의 곱, 삼차항과 상수항의

곱이 각각 2개씩 나온다. $(-2x^3 \times b) \times 2 + (x^2 \times ax) \times 2 = (-4b + 2a)x^3$

2a - 4b = -8

 $\therefore a - 2b = -4$

17. a = 2004, b = 2001일 때, $a^3 - 3a^2b + 3ab^2 - b^3$ 의 값은?

① 21

② 23

③ 25

⑤ 29

준 식은 $(a-b)^3$ 이다. a - b = 2004 - 2001 = 3

 $\therefore (a-b)^3 = 3^3 = 27$

18. 세 실수 a,b,c 에 대하여 a+b+c=2, $a^2+b^2+c^2=6$, abc=-1 일 때, $a^3+b^3+c^3$ 의 값은?

① 11 ② 12 ③ 13 ④ 14 ⑤ 15

해설

 $(a+b+c)^{2} = a^{2} + b^{2} + c^{3} + 2(ab+bc+ca)$ ab+bc+ca = -1 $a^{3} + b^{3} + c^{3}$ $= (a+b+c)(a^{2} + b^{2} + c^{2} - ab - bc - ca) + 3abc$ $= 2 \times (6 - (-1)) - 3 = 11$

19. a+b+c=0, $a^2+b^2+c^2=1$ 일 때, $4(a^2b^2+b^2c^2+c^2a^2)$ 의 값은?

① $\frac{1}{4}$ ② $\frac{1}{2}$ ③ 1 ④ 2 ⑤ 3

(a+b+c)² = a² + b² + c² + 2(ab + bc + ca)
∴ ab + bc + ca =
$$-\frac{1}{2}$$

$$4(a^{2}b^{2} + b^{2}c^{2} + c^{2}a^{2})$$

$$= 4\{(ab + bc + ca)^{2} - 2abc(a + b + c)\}$$

$$= 4 \times \left(-\frac{1}{2}\right)^{2} = 1$$

20. 모든 모서리의 합이 36, 겉넓이가 56인 직육면체의 대각선의 길이는?

1 5 2 6 3 7 4 8 5 9

직육면체의 가로, 세로, 높이를 각각 a, b, c라 하자.

 $4(a+b+c) = 36, \ 2(ab+bc+ca) = 56$ $(a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab+bc+ca)$ $a^2 + b^2 + c^2 = 81 - 56 = 25$

 \therefore (대각선의 길이) = $\sqrt{a^2 + b^2 + c^2}$

해설

 $= \sqrt{25} = 5$

21. $x^2 - x + 1 = 0$ 일 때, $x^5 + \frac{1}{x^5}$ 의 값은?

① -2 ② -1 ③ 0 ④1 ⑤ 2

 $x^2 - x + 1 = 0$, 양변에 x + 1을 곱하면, $(x + 1)(x^2 - x + 1) = 0$ $x^3 + 1 = 0$, $x^3 = -1$ 에서 $x^5 = x^3 \times x^2 = -x^2$

 $x^5 + \frac{1}{x^5} = -\left(x^2 + \frac{1}{x^2}\right) \cdots ①$ $x^2 - x + 1 = 0$ 를 x로 나누어 정리한다.

 $x + \frac{1}{x} = 1$

 $x^{2} + \frac{1}{x^{2}} = \left(x + \frac{1}{x}\right)^{2} - 2 = -1$ ① 에 대입하면, $x^{5} + \frac{1}{x^{5}} = 1$

X³

22. $\frac{2005^3 + 1}{2005 \times 2004 + 1}$ 의 값을 구하여라.

▶ 답:

▷ 정답: 2006

해설

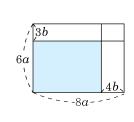
2005 = x 로 놓으면(준 식) = $\frac{x^3 + 1^3}{x(x-1) + 1}$ = $\frac{(x+1)(x^2 - x + 1)}{x^2 - x + 1}$ = x + 1= 2006

23. 세 변의 길이가 a, b, c인 \triangle ABC에 대하여 $a^2 - ab + b^2 = (a + b - c)c$ 인 관계가 성립할 때, \triangle ABC는 어떤 삼각형인지 구하여라.

답:▷ 정답: 정삼각형

 $a^2 - ab + b^2 = (a + b - c)c$ 에서 $a^2 - ab + b^2 = ac + bc - c^2$ $a^2 + b^2 + c^2 - ab - bc - ca = 0$ 즉, $\frac{1}{2} \left\{ (a - b)^2 + (b - c)^2 + (c - a)^2 \right\} = 0$ $\therefore a = b = c$ 따라서, $\triangle ABC$ 는 정삼각형이다.

24. 다음 그림에서 색칠한 직사각형의 넓이는?



- ① $6a^2 7ab + 2b^2$ ③ $48a^2 - 48ab + 12b^2$
- ② $36a^2 42ab + 12b^2$
- $4 12a^2 12ab + 3b^2$

 $6a - 3b(8a - 4b) = 48a^2 - 48ab + 12b^2$

25. $a = \sqrt[3]{4}$, $b + c = \sqrt[3]{4}$ 일 때, $a^3 + b^3 + c^3 + 3abc$ 의 값을 구하여라.

▶ 답:

▷ 정답: 8

해설

 $a = \sqrt[3]{4} \text{ on } A^3 = 4 \cdots \text{ on}$ $b + c = 3\sqrt{4} \text{ on } A \text{ on } (b+c)^3 = 4$

 $= b^3 + c^3 + 3bc(b+c) = 4$ b+c=a이므로

 $b^3 + c^3 + 3abc = 4 \cdots \bigcirc$

○+ⓒ을하면

 $a^3 + b^3 + c^3 + 3abc = 4 + 4 = 8$