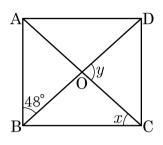

1. 다음 그림의 직각삼각형 ABC 에서 점 D 는 빗변의 중심이다. $\overline{BD} = \overline{DC} = 5 \, \mathrm{cm}$ 일 때, \overline{AD} 의 길이를 구하여라.

답:


➢ 정답: 5 cm

- 해설

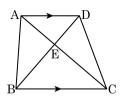
삼각형의 외심으로부터 각 꼭짓점까지의 거리는 같다. $\overline{BD} = \overline{DC} = \overline{AD} = 5 \, \mathrm{cm}$

cm

2. 직사각형 ABCD 에서 $\angle x + \angle y$ 를 구하면?

- ① 42° ② 84° ③ 90°

126° ⑤ 134°


해설

정사각형의 한 내각의 크기는 90°, 대각선의 길이가 같으므로 $\overline{OB} = \overline{OC}$

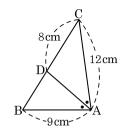
$$\angle x = 90^{\circ} - 48^{\circ} = 42^{\circ}, \ \angle y = 2\angle x = 84^{\circ}$$

$$\therefore \ \angle x + \angle y = 126^{\circ}$$

다음 그림의 사각형 ABCD 에서 AD // BC 이고, △ABC 의 넓이가 20 cm² 일 때, △DBC 의 넓이를 구하여라.

▷ 정답: 20 cm²

답:

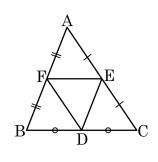

해설

및 면비에 동일하고 밑변과 평행한 직선까지의 거리가 같으므로 \triangle ABC 의 넓이와 \triangle DBC 의 넓이는 같다.

 $\rm cm^2$

∴ △DBC = 20 cm²이다.

 다음 그림에서 AD 가 ∠A 의 이등분선이고, △ABC = 63cm² 일 때, △ABD 의 넓이를 구하 여라.


▷ 정답: 27 cm²

단:

 \triangle ABD 와 \triangle ACD 의 밑변의 길이의 비는 9:12=3:4 이고 높이는 서로 같으므로 넓이의 비도 3:4 이다. 전체 넓이가 $63\,\mathrm{cm^2}$ 이므로 \triangle ABD 의 넓이는 $27\,\mathrm{cm^2}$ 이다.

 cm^2

5. 다음 그림에서 점 D, E, F 는 각각 \overline{BC} , \overline{CA} , \overline{AB} 의 중점일 때, 보기에서 옳지 않은 것을 골라라.

 \bigcirc $\overline{\mathrm{DF}} / / \overline{\mathrm{AC}}$

 \bigcirc $\overline{DE} = \overline{AF}$

 \bigcirc $\overline{\mathrm{DF}} = \overline{\mathrm{EF}}$

 \bigcirc \triangle ABC \bigcirc \triangle DEF

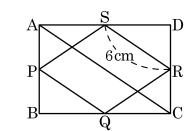
답:

▷ 정답: □

해설

- \bigcirc $\overline{AF} = \overline{FB}$ 이므로 $\overline{DF} // \overline{AC}$ 이다.
- ① 삼각형의 중점연결 정리에 의하여 $\overline{DE} = \frac{1}{2}\overline{AB}$ 이다. 따라서 $\overline{DE} = \overline{AF}$ 이다.
- \bigcirc 삼각형의 중점연결 정리에 의하여 $\overline{\mathrm{DF}} = \frac{1}{2}\overline{\mathrm{AC}} = \overline{\mathrm{AE}}, \overline{\mathrm{EF}} =$
- $\frac{1}{2}\overline{\mathrm{BC}} = \overline{\mathrm{BD}}$ 이므로 $\overline{\mathrm{DF}} \neq \overline{\mathrm{EF}}$ 이다.
- ⓐ $\overline{AF} = \overline{FB}$ 이므로 $\overline{EF} // \overline{BC}$ 이고, $\angle AEF$ 와 $\angle C$ 는 서로 동위 각이므로 각의 크기가 같다.

따라서 △ABC ∽ △DEF 이다.

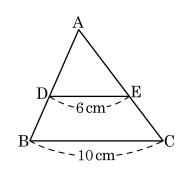

다음 그림에서
$$\overline{\mathrm{AD}} \, / \! / \, \overline{\mathrm{BC}}$$
이고, 점 E, F 는 각각 $\overline{\mathrm{AB}}, \overline{\mathrm{DC}}$ 의 중점이다. x 의 값은?

6.

해결
$$x = \frac{1}{2}(6+8) = 7$$

7. 직사각형 ABCD 에서 각 변의 중점 P,Q,R,S 를 연결한 $\square PQRS$ 는 마름모이다. $\square PQRS$ 의 한 변의 길이가 6cm 일 때, \overline{AC} 의 길이는?

① 10cm ② 11cm ③ 12cm ④ 15cm ⑤ 16cm


$$\overline{AC} = 2\overline{SR} = 2 \times 6 = 12(cm)$$

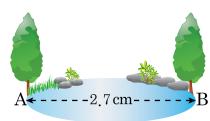
다음 그림에서 점 G 는 ΔABC 의 무게중 심이고, 점 G'는 △GBC 의 무게중심이다. $\overline{AD} = 9 \text{ cm}$ 일 때, $\overline{GG'}$ 의 길이는? $2\,\mathrm{cm}$ ① 1 cm 3 cm \odot 5 cm $4 \mathrm{cm}$

$$4 \text{ 4 cm}$$
 5 5 cm $B \longrightarrow C$

 $\overline{GG'} = 3 \times \frac{2}{3} = 2 \text{ (cm)}$

9. 다음 그림에서 DE // BC 이고 △ADE = 15cm² 일 때, □DBCE 의 넓이를 구하여라.

 cm^2


6:10=3:5이코

넓이의 비는 9 : 25 이다. △ADE : □DBCE = 9 : (25 - 9) = 9 : 16

 $9:16=15:\square DBCE$

 $\therefore \Box DBCE = \frac{80}{3} (cm^2)$

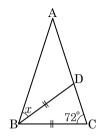
10. 연못가의 두 나무 A, B 사이의 거리를 알기 위하여 다음 그림과 같은 축도를 그려 선분 AB 의 길이를 재었더니 2.7cm 로 나타났다. 이 축도에서 실제 거리 100m 가 3cm 로 나타난다면 두 나무 사이의 실제 거리는 얼마인지 구하여라.

답:

 $_{\mathrm{m}}$

▷ 정답 : 90 m

해설


100m 가 3cm 로 나타나므로 축척은

3cm: 100m = 3cm: 10000cm = 3:10000이다. A, B 두 나무 사이의 실제 거리를 xcm 라 하면 $\overline{AB} = 2.7$ cm

이므로 2.7: x = 3:10000

x = 9000(cm) = 90(m) 이다.

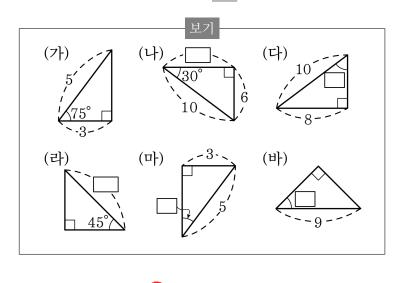
11. 다음 그림의 $\triangle ABC$ 에서 $\overline{AB} = \overline{AC}$ 일 때. $\angle x$ 의 크기는?

(5) 38°

② 32°

① 30°

ΔBCD 는 이등변삼각형이므로


③ 34°

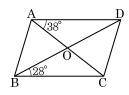
$$\angle$$
CBD = $180^{\circ} - 2 \times 72^{\circ} = 36^{\circ}$
 \triangle ABC 는 이등변삼각형이므로
 \angle ABC = \angle ACB = 72°

$$\triangle$$
ABC 는 이등변삼각형이므로
 \angle ABC = \angle ACB = 72 $^{\circ}$

$$\angle ABC = \angle ACB = 72^{\circ}$$

 $\therefore \angle x = 72^{\circ} - 36^{\circ} = 36^{\circ}$

12. 다음 삼각형 중에서 (가)와(마), (나)와(다), (라)와(바)가 서로 합동이다. 빈 칸에 들어갈 숫자로 옳지 <u>않은</u> 것을 모두 고르면?

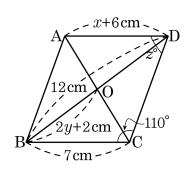


) (다) 45° ③ (라) 9

13. 다음 그림의 사각형 ABCD 가 평행사변형일 때, ∠AOD 의 크기를 구하여라.

답:

 $= 114^{\circ}$


➢ 정답 : 114 º

14. 평행사변형 ABCD 에서 BE 는 ∠B 의 이등분 A E 선이다. ∠AEB = 42° 일 때, ∠C 의 크기는?

① 84° ② 90° ③ 94°

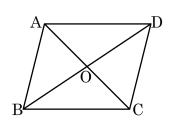
(5) 98°

15. 평행사변형 ABCD 에서 $\overline{BC}=7\mathrm{cm}, \ \overline{BD}=12\mathrm{cm}, \angle BCD=110^\circ$ 일 때, z-x-y 의 값을 구하여라.(단, 단위생략)

▶ 답:

▷ 정답: 67

 $\overline{\mathrm{AD}} = \overline{\mathrm{BC}}$ 이므로 x + 6 = 7


 $\therefore x = 1(\,\mathrm{cm})$

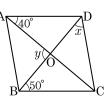
평행사변형의 대각선은 서로 다른 것을 이등분하므로 $\overline{\rm OB}=\frac{1}{2}\overline{\rm BD},$ 즉 2y+2=6

 $OB = \frac{1}{2}DD$, $\exists 2y + 2 = 2$

 $\therefore y = 2(\text{cm})$

 \angle C + \angle D = 180°, 즉 110° + z = 180° 이므로 z = 70° $\therefore z - x - y = 67$ **16.** 다음 □ABCD 의 두 대각선의 교점을 O 라 할 때, 다음 중 평행사변형 이 되지 않은 것은?

①
$$\overline{AB} = \overline{DC}, \ \overline{AD} = \overline{BC}$$

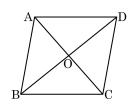

$$\bigcirc$$
 $\overline{OA} = \overline{OC}, \overline{OB} = \overline{OD}$

$$\overline{3} \overline{AB}//\overline{DC}, \overline{AD}//\overline{BC}$$

$$\bigcirc$$
 $\overline{AB}//\overline{DC}$, $\overline{AB} = \overline{DC}$

$$\angle A + \angle D = \angle C + \angle D$$
 가 되어야 한다.

17. 다음 평행사변형 ABCD 에서 ∠DAO = 40° Д이고, ∠OBC = 50°일 때, ∠x + ∠y 의 크기를 구하여라.


▶ 답:

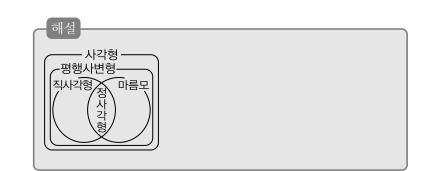
▷ 정답: 140°

해설

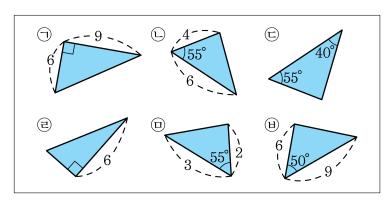
평행사변형이므로 \overline{AD} // \overline{BC} 이고, $\angle DAO = \angle OCB = 40$ ° 이고, $\angle ADO = \angle OBC = 50$ ° 이므로 $\angle AOD = 90$ ° 이다. $\angle AOD = 90$ ° 이므로 $\Box ABCD$ 는 마름모이고 $\triangle BCD$ 는 이등변 삼각형이고, $\angle x = 50$ ° 이다. 따라서 $\angle x + \angle y = 50$ ° + 90 ° = 140 ° 이다.

18. 다음 그림의 평행사변형 ABCD 가 정사각형 이 되기 위한 조건을 모두 고르면? (정답 2 개)

- \bigcirc $\overline{AC} \perp \overline{DB}$, $\angle ABC = 90^{\circ}$
- ② $\overline{AO} = \overline{BO}$, $\angle ADO = \angle DAO$
- \bigcirc $\overline{AC} \perp \overline{DB}$, $\overline{AB} = \overline{AD}$
- $\overline{\text{OA}} = \overline{\text{OD}} , \overline{\text{AB}} = \overline{\text{AD}}$
- $\overline{\text{AC}} = \overline{\text{DB}} , \angle \text{ABC} = 90^{\circ}$


해설

평행사변형이 정사각형이 되기 위해서는 두 대각선이 서로 수직 이등분하고 한 내각의 크기가 90°이다. 또한 네 변의 길이가 같고. 네 내각의 크기가 같으면 정사각형

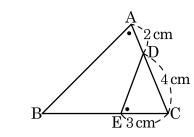

또한 네 변의 길이가 같고, 네 내각의 크기가 같으면 정사각형 이다.

19. 사다리꼴, 평행사변형, 직사각형, 마름모, 정사각형의 관계를 나타낸 것 중 옳지 <u>않은</u> 것을 모두 고르면?

- ① 평행사변형은 사다리꼴이다.
- ②마름모는 직사각형이다.
- ③ 직사각형이면서 마름모인 것은 정사각형이다.
- ④ 정사각형은 마름모이다.
- ⑤ 평행사변형이면서 마름모인 것은 사다리꼴이다.

20. 다음 삼각형 중에서 서로 닮은 삼각형은?

① ⑦, ⓒ

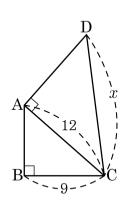

- ② L, D
- 4 c, c, d, d
- (5) (L), (H)

 \bigcirc \bigcirc , \bigcirc , \bigcirc

해설

② SAS 닮음이다.

21. 다음 그림에서 $\angle A=\angle DEC$ 이고 $\overline{AD}=2cm$, $\overline{CD}=4cm$, $\overline{CE}=3cm$ 일 때, \overline{BE} 의 길이는?

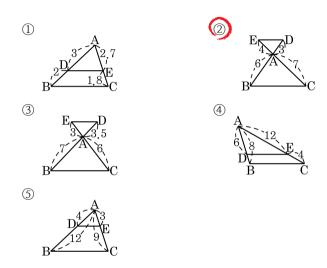


 $\overline{BC} = 8(cm)$

 $\therefore \overline{BE} = 8 - 3 = 5 \text{(cm)}$

다음 그림에서 $\angle B = \angle DAC = 90^{\circ}$, $\angle ACB = \angle DCA$ 이다. 이 때, x 의

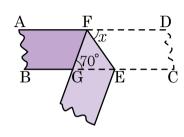
값은?



① 15 ③ 17 **4** 18 **5** 19

해설
$$\triangle ABC \ P \triangle DAC \ P \angle B = \angle DAC,$$

$$\angle ACB = \angle DCA, \angle ABC = \angle DAC \ P = \Delta BC \ \triangle DAC \ ABC \ ABC \ \triangle DAC \ ABC \ BC : \overline{AC} \ P = \overline{BC} : \overline{AC} \ P = \overline{AC} : \overline{AC} :$$


${f 23}$. 다음 그림에서 ${f BC}//{f DE}$ 가 평행하지 않은 것은?

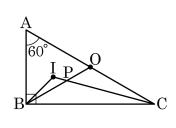
해설

- ② $\overline{BC}//\overline{DE}$ 라면, $\overline{AE}:\overline{AC}=\overline{AD}:\overline{AB}$ 이다.
- $4:7 \neq 3:6$ 이므로 $\overline{\mathrm{BC}}//\overline{\mathrm{DE}}$ 이 아니다.

24. 다음 그림과 같이 폭이 일정한 종이 테이프를 접었다. $\angle FGE = 70^{\circ}$ 일 때. $\angle x$ 의 크기는?

① 70° ② 65° ③ 60° ④ 55° ⑤ 50°

종이 테이프를 접으면
$$\angle DFE = \angle EFG = \angle x$$
이고 $\angle DFE = \angle GEF = \angle x$ (엇각) $\triangle EFG$ 의 내각의 합은 180° 이므로 $\therefore \angle x = \frac{180^{\circ} - 70^{\circ}}{2} = 55^{\circ}$


25. 다음 그림과 같이 $\angle A=90^\circ$, $\overline{AB}=\overline{AC}$ 인 지각이등변삼각형 ABC 의 꼭짓점 B, C 에서 점 A 를 지나는 직선 l 위에 내린 수선의 발을 각각 D, E 라 할 때, $\overline{DB}+\overline{EC}$ 의 값은 ?

16

(3) 8

 \bigcirc 2

26. 다음 그림에서 ∠B = 90° 인 직각삼각형 ABC 에서 점 I,O 는 각각 내심, 외심이다. ∠A = 60° 일 때, ∠BPC 의 크기를 구하여라.

답:

외심의 성질에 의해
$$\overline{OA} = \overline{OB}$$
 이므로 $\angle A = \angle OBA = 60^\circ \rightarrow$

➢ 정답: 135 °

해설

 15° 이고, $\angle \mathrm{BIC} = 90^{\circ} + 60^{\circ} \times \frac{1}{2} = 120^{\circ}$ 이므로

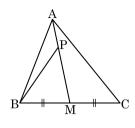
2 △IBC의 내각의 합을 이용하면 ∠IBC = 180° - (120° + 15°)

= 45° 이다. …① ②-①에 의해 ∠IBP = 15° 이다.

∠BPC 는 ∠IPB 의 외각이므로 ∴∠BPC = ∠BIC + ∠IBP =

 $120^{\circ} + 15^{\circ} = 135^{\circ}$

27. 다음 그림의 평행사변형 ABCD 에서 ĀD, BC 의 중점을 각각 E, F 라 하고, 대각선 AC 와 BE, FD, EF 의 교점을 각각 G, H, I 라 한다. □ABCD의 넓이가 52 cm² 일 때, □BFHG 의


► 답: <u>cm²</u>

넓이를 구하여라.

ΔIGE ≡ ΔIFH (ASA 합동)이므로
□BFHG = ΔBFE =
$$\frac{1}{2}$$
□ABFE =

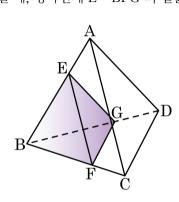
$$\Box BFHG = \triangle BFE = \frac{1}{2} \Box ABFE = \frac{1}{4} \Box ABCD$$
$$= \frac{1}{4} \times 52 = 13 \text{ (cm}^2\text{)}$$

28. 다음 그림에서 점 M은 \overline{BC} 의 중점이고 \overline{AP} : $\overline{PM}=1:2$ 이다. $\triangle ABC=60 {\rm cm}^2$ 일 때 $\triangle PBM$ 의 넓이를 구하여라.

<u>cm²</u>

▷ 정답: 20 cm²

해설


 $\triangle ABM$ 과 $\triangle AMC$ 의 밑변의 길이와 높이가 같으므로, 두 삼각형 의 넓이는 같다.

 $\triangle ABM = 30cm^2$

 \triangle APB와 \triangle BMP의 높이는 같고 밑변의 길이의 비가 1:2이므로

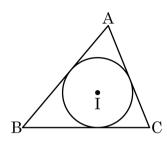
 $\triangle PBM = 30 \times \frac{2}{3} = 20 (cm^2)$

29. 다음 그림과 같이 정사면체 A – BCD 의 각 모서리의 길이를 $\frac{2}{2}$ 로 줄여 작은 정사면체 E - BFG 를 만들었다. 정사면체 A - BCD 의 겉넓이가 90cm² 일 때, 정사면체 E – BFG 의 겉넓이는 얼마인가?

 $40 \, \mathrm{cm}^2$

- ② 50cm^2

 $\bigcirc 3 60 \text{cm}^2$


 $40 70 \text{cm}^2$

 $5 80 \text{cm}^2$

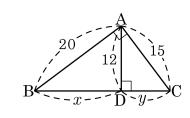
정사면체 A - BCD 와 정사면체 E - BFG 의 닮음비가 3:2 이므로 넓이의 비는 9:4 이다.

 \therefore (정사면체 E – BFG 의 겉넓이)= $90 \times \frac{4}{9} = 40 (\text{cm}^2)$

30. 다음 그림에서 점 I 는 삼각형 ABC 의 내심이다. 삼각형의 둘레의 길이가 30cm 이고, 넓이가 60cm² 일 때, 내접원의 넓이를 구하여라.

 cm^2

삼각형의 둘레가 30 cm 이고, 넓이가 60cm^2 이므로 $\frac{1}{2} \times 30 \times$


답:
 ▷ 정답: 16π cm²

(반지름의 길이) = 60 반지름의 길이는 4cm 이다.

따라서 내접원의 넓이는 $\pi \times 4^2 = 16\pi (\mathrm{cm}^2)$

31. 다음 그림과 같이 $\angle A = 90^{\circ}$ 인 직각삼각형 ABC에서 $\overline{BC} \perp \overline{AD}$ 이고,

 $\overline{AB} = 20$, $\overline{AD} = 12$, $\overline{AC} = 15$ 일 때, x - y의 값을 구하여라.

정답: 7

해설
$$\overline{AB} \times \overline{AC} = \overline{AD} \times \overline{BC}$$
 이므로

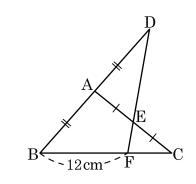
$$20 \times 15 = 12(x+y)$$

$$\therefore x + y = 25$$

$$\overline{AB}^2 = \overline{BD} \times \overline{BC}$$
 이므로 $20^2 = x(x+y)$

$$25x = 400$$
$$\therefore x = 16$$

$$\therefore x = 16$$

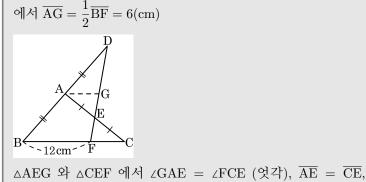

 $15^2 = y(x+y)$

$$\overline{AC}^2 = \overline{CD} \times \overline{CB}$$
 이므로

$$25y = 225$$
$$\therefore y = 9$$

$$x - y = 16 - 9 = 7$$

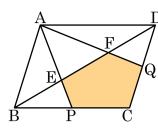
32. 아래 그림과 같이 $\triangle ABC$ 에서 \overline{AB} 의 연장선 위에 $\overline{AB} = \overline{AD}$ 를 만족 하는 점 D 를 잡고, \overline{AC} 의 중점 E 에 대하여 \overline{DE} 의 연장선과 \overline{BC} 의 교점을 F 라 하자. $\overline{BF} = 12 \text{cm}$ 일 때, \overline{CF} 의 길이는?



- (1) 4cm
- ② 5cm

다음 그림과 같이 $\overline{\mathrm{AG}}//\overline{\mathrm{BC}}$ 가 되도록 점 G 를 잡으면 $\Delta\mathrm{DBF}$

6cm


 $4 \frac{13}{2}$ cm ⑤ 7cm

∠AEG = ∠CEF (맞꼭지각) 이므로

 $\triangle AEG = \triangle CEF(ASA합동)$ $\therefore \overline{CF} = \overline{AG} = 6(cm)$

33. 다음 그림과 같은 평행사변형 ABCD 에서 변 BC , CD 의 중점을 각각 P , Q 라 하고, □ABCD 의 넓이가 90cm² 일 때, 오각형 EPCQF 의 넓이는?

 \bigcirc 20cm²

(4) 35cm²

- 2 ② 25cm^{2}
- cm^2 $330cm^2$

해설

이다. 무게중심의 성질에 의해 \overline{GE} : $\overline{EB}=1:2$ 이다.

무게중심의 성실에 의해 GE : EB = 1 : 2 이다. □ABCD 의 넓이가 90 cm² 이므로

 \overline{AC} 와 \overline{BD} 의 교점을 G 라 하면, $\triangle ABC$ 에서 점 E 는 무게중심

 $(5) 40 \text{cm}^2$

 \triangle BCD = 45 cm^2 , \triangle BGC = $22.5 \text{ (cm}^2)$ 이고

 $\Delta BEC = \frac{2}{3} \Delta BGC = 15 (= DDcmsq)$ $\Delta BEP = \Delta BEC \times \frac{1}{2} = 7.5 (cm^2)$

따라서 (A 가현EDCOE

(오각형EPCQF)

 $= \triangle BCD - (\triangle BEP + \triangle FQD)$ $= 45 - 7.5 \times 2 = 30 \text{ (cm}^2)$

이다.