- 1. 등식 $3x^2 + 2x + 1 = a(x-1)^2 + b(x-1) + c$ 이 x에 대한 항등식이 될 때, a-b+c의 값은?
 - ① 6 ② 5 ③ 3 ④1 ⑤ 0

해설

우변을 전개하여 x에 대한 내림차순으로 정리하면 $ax^{2} - (2a - b)x + a - b + c = 3x^{2} + 2x + 1$ 계수를 비교하면 a = 3, 2a - b = -2, a - b + c = 1a = 3, b = 8, c = 6a - b + c = 3 - 8 + 6 = 1

양변에 x = 0을 대입하면 1 = a - b + c

해설

- 등 시 $2x^2 6x 2 = a(x+1)(x-2) + bx(x-2) + cx(x+1)$ 가 x 의 **2**. 값에 관계없이 항상 성립할 때, 상수 a+b+c 의 값을 구하면?
 - 1 2

- ② 1 ③ 0 ④ -1 ⑤ -2

x = 0을 대입하면: a = 1

- x = -1을 대입하면: b = 2
- x=2을 대입하면: c=-1
- $\therefore a+b+c=2$

(3+i)(a+bi) = 1-3i를 만족하는 실수 a, b에 대하여 a+b를 3. 구하면?

① -2

- ②-1 ③ 0 ④ 1 ⑤ 2

해설 (3+i)(a+bi) = 1-3i

(3a - b) + (a + 3b)i = 1 - 3i

 $\therefore 3a - b = 1, \quad a + 3b = -3$

 $\Rightarrow a = 0, b = -1$ $\therefore a+b=-1$

4. 허수단위 i에 대하여 $i + i^2 + i^3 + i^4 + i^5 + i^6$ 을 간단히하면?

②-1+i ③ 2*i* ① 1 + i⑤ 2 4 2 + i

 $i + i^2 + i^3 + i^4 + i^5 + i^6$ = i + (-1) + (-i) + 1 + i + (-1)= -1 + i

5. $x^2 - 5x + 6 = 0$ 의 근을 근의 공식을 이용하여 구하여라.

 □
 □

 □
 □

▷ 정답: x = 2

> 정답: *x* = 3

해설

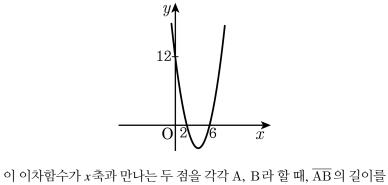
 $x = \frac{5 \pm \sqrt{25 - 4 \times 1 \times 6}}{2} = \frac{5 \pm 1}{2}$ $\therefore x = 2 \, \text{\mathbb{E}} \dgraph x = 3$

- **6.** x에 대한 이차방정식 $x^2 + a(a-1)x + 3a = 0$ 의 한 근이 1일 때, 다른 한 근은? (단, a는 상수)
 - ① -1 ② -3 ③ 0 ④ 1 ⑤ 3

해설

x = 1을 대입하면 $1^2 + a(a-1) + 3a = 0$ $a^2 + 2a + 1 = (a+1)^2 = 0$ $\therefore a = -1$ $x^2 - 1 \cdot (-2)x - 3 = x^2 + 2x - 3$ = (x+3)(x-1) = 0 $\therefore x = 1, -3 \qquad \therefore x = -3$

- 7. 이차방정식 $x^2 + 4x + k = 0$ 이 허근을 가지도록 상수 k의 값의 범위를 정하여라.
 - ▶ 답:


> 정답: k > 4

 $\frac{D}{4} = 2^2 - k < 0$

해설

 $\therefore k > 4$

8. 다음은 이차함수 y = (x-2)(x-6)의 그래프이다.

구하여라. **답:**

▷ 정답: 4

이차방정식 (x-2)(x-6)=0 에서 x=2 또는 x=6 따라서 A $(2,\ 0)$, B $(6,\ 0)$ 이므로 $\overline{\rm AB}=4$

- 좌표평면 위의 두 점 A(1, 2), B(4, -2)를 1 : 2로 외분하는 점을 9. C(a, b)라 할 때, a + b의 값을 구하여라.

▶ 답: ▷ 정답: 4

외분점은 $C\left(\frac{1\cdot 4-2\cdot 1}{1-2},\; \frac{1\cdot (-2)-2\cdot 2}{1-2}\right)$ 즉, C(-2, 6)이므로 a+b=-2+6=4

- **10.** 삼각형 ABC의 세 꼭짓점의 좌표가 A(2, -1), B(-3, 5), C(a, b)이고 무게중심의 좌표가 G (-1, 1)일 때, a와 b의 차 a-b의 값은?
 - **2**-1 ① -3 ③ 0 ④ 1 ⑤ 5

세 점을 알 때 무게중심을 구하는 공식에서 $\{2 + (-3) + a\} \div 3 = -1$

 $\therefore a = -2$

 $\{(-1) + 5 + b\} \div 3 = 1$

 $\therefore b = -1$ 따라서, a-b의 값은 -2-(-1)=-1

해설

- **11.** 점 (1, 3) 을 지나고 기울기가 3 인 직선은?

- ① y = 3x ② y = -x + 2 ③ y = -2x + 3④ y = -2x ⑤ $y = \frac{1}{3}x + 2$

y - 3 = 3(x - 1) $\Rightarrow \quad \therefore \quad y = 3x$

- **12.** 직선 x+ay+1=0이 x-y+1=0과는 수직이고, x+(2-b)y-1=0과는 평행일 때, a+b의 값은?
 - ① 1
- **2**2

- ③ 3 ④ 4 ⑤ 5

해설 $x + ay + 1 = 0 \cdots \bigcirc$

$$x - y + 1 = 0 \cdots \textcircled{2}$$

$$x + (2 - b)y - 1 = 0 \cdots \textcircled{2}$$

$$\textcircled{3} \bot \textcircled{2} : 1 \times 1 + a \times (-1) = 0$$

$$\therefore a = 1$$

$$\therefore b=1$$

$$\therefore a+b=2$$

13. 점(2,-1)과 직선 x-y-1=0 사이의 거리는?

① $\frac{\sqrt{2}}{2}$ ② $\sqrt{2}$ ③ $\sqrt{3}$ ④ 2 ⑤ $2\sqrt{2}$

해설 : 거리 = $\frac{|2+1-1|}{\sqrt{1^2+(-1)^2}}$ = $\sqrt{2}$

- **14.** 원점을 중심으로 하고, 점 (3, -4)를 지나는 원의 방정식을 구하면?

 - ① $x^2 + 2y^2 = 41$ ② $2x^2 + y^2 = 34$ ③ $x^2 + y^2 = 25$

해설

구하는 원의 반지름을 r 이라 하면

지하는 원의 원자님을 r하다 $x^2 + y^2 = r^2 \cdots \cdots$ 이 점 (3, -4) 를 지나므로 $3^2 + (-4)^2 = r^2 \therefore r^2 = 25$ 이 때, 이 은 $x^2 + y^2 = 25$

이 때,
$$\bigcirc$$
는 $x^2 + y^2 = 25$

15. 점 (1,5), (-2,-4), (5,3)을 지나는 원의 방정식이 x^2+y^2+Ax+ By + C = 0일 때, $A \times B \times C$ 의 값을 구하여라.

▶ 답: ▷ 정답: 0

해설 구하는 원의 방정식을

 $x^2 + y^2 + Ax + By + C = 0 \cdots$ 으로 놓으면 $26+A+5B+C=0\cdots \bigcirc$ $34 + 5A + 3B + C = 0 \cdots$

ℂ, ℂ, ඬ에서 연립방정식을 풀면

 $A = -2, B = 0, C = -24 \cdots \bigcirc$

16. x 축의 방향으로 m 만큼, y 축의 방향으로 n 만큼 옮기는 평행이동에 의하여 점 (-2,4) 가 점 (6,-2) 로 옮겨진다. 이때, 상수 m,n 의 값의 합을 구하여라.

▷ 정답: 2

· -

▶ 답:

해설 점 (-2, 4) 를 *x* 축의 방향으로 *m* 만큼,

y 축의 방향으로 n 만큼 옮기면 (-2 + m, 4 + n) 이고 이 점이 (6, -2) 와 일치하므로

 $-2 + m = 6 \qquad \therefore m = 8$ $4 + n = -2 \qquad \therefore n = -6$

따라서, 구하는 *m*, *n* 의 값의 합은 8 + (-6) = 2

- **17.** 방정식 y = -3x + 1 이 나타내는 도형을 x 축의 방향으로 4 만큼, y축의 방향으로 -2 만큼 평행이동한 도형의 방정식을 구하면?

 - ① y = -x + 4 ② y = -2x + 6
- $\bigcirc y = -3x + 11$

해설

y + 2 = -3(x - 4) + 1 $\therefore y = -3x + 11$

공이 주어진 그림의 영역 밖에 떨어지면 파울이라 한다. 실선으로 이루어진 도형의 안쪽은 부등식 $y \ge |x|$ 의 영역의 일부라 할 때, 다음의 타구 낙하점 중 파울인 것은? (홈을 원점으로 하고, 홈의 정동쪽을 x 축의 양의 방향으로 하는 직교좌표계를 사용한다)

18. 다음 그림은 야구장 전경이다. 타자가 친

① (0, 1) ② (2, 5)

- **4** (0, 10) **5** (1, 10)
- (3, 1)

해설 부등식 $y \ge |x|$ 의 영역 밖에 있는 점을 묻고 있다. (3, 1)을

주어진 부등식에 대입하면 성립하지 않는다.

따라서 (3, 1) 이 주어진 부등식의 영역 밖에 있다.

19. $a^2b + b^2c - b^3 - a^2c$ 을 인수분해하면?

- ① (a+b)(a-b)(b+c) ② (a-b)(b-c)(c+a)
- (3)(a-b)(a+b)(b-c) (4)(a-b)(a+b)(c-a)⑤ (a-b)(b+c)(c-a)

$$a^{2}b + b^{2}c - b^{3} - a^{2}c$$

$$= a^{2}(b-c) - b^{2}(b-c)$$

$$= (a-b)(a+b)(b-c)$$

20. 다항식 $(x-1)^3 + 27$ 을 바르게 인수분해한 것은?

- ① $(x-1)(x^2+3)$ ② $(x-1)(x^2-x-2)$
- ③ $(x-1)(x^2+3x+3)$ ④ $(x+2)(x^2+x+7)$

x-1을 A로 치환하면 준 식 = $A^3 + 27 = (A+3)(A^2 - 3A + 9)$

다시 x-1을 대입하면 $(x+2)(x^2-5x+13)$

21. 방정식 |x| + |x - 1| = 2의 해를 구하시오.

▶ 답:

▶ 답:

ightharpoonup 정답: $-\frac{1}{2}$ 또는 -0.5

ightharpoonup 정답: $\frac{3}{2}$ 또는 1.5

i) x < 0일 때, -x-(x-1) = 2이므로 -2x+1=2

 $\therefore x = -\frac{1}{2}$ ii) 0 ≤ x < 1 일 때,

x-(x-1)=2이므로 $0 \cdot x=1$: 해가 없다.

iii) 1 ≤ *x* 일 때, x + x - 1 = 2이므로 2x = 3

 $\therefore \ x = \frac{3}{2}$

(i), (ii), (iii)에서 $x=-\frac{1}{2}$ 또는 $x=\frac{3}{2}$

- ${f 22.}$ x에 대한 이차방정식 $2mx^2+(5m+2)x+4m+1=0$ 이 중근을 갖도록 하는 실수 m의 값은?
 - ① $-\frac{3}{2}$, -2 ② $-\frac{7}{12}$, $-\frac{1}{2}$ ③ $-\frac{7}{2}$, 2 ③ $\frac{2}{7}$, $\frac{3}{2}$

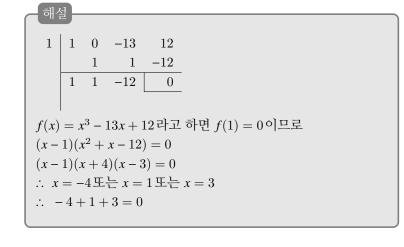
주어진 이차방정식의 판별식을 D라고 하면 중근을 가질 조건은

D=0이므로 $D = (5m+2)^2 - 4 \cdot 2m \cdot (4m+1) = 0$

$$25m^2 + 20m + 4 - 32m^2 - 8m = 0$$
$$7m^2 - 12m - 4 = 0$$

$$(7m+2)(m-2) = 0$$

$$\therefore m = -\frac{2}{7} \, \cancel{\Xi} \, \stackrel{\sim}{\leftarrow} \, 2$$


$$\therefore m = -\frac{2}{7} \, \mathbb{E} \stackrel{\sim}{\leftarrow} 2$$

23. 다음 방정식의 모든 근의 합을 구하여라.

$$x^3 - 13x + 12 = 0$$

답:

▷ 정답: 0

- **24.** 두 직선 ax 2y + 2 = 0, 2x + by + c = 0이 점 (2, 4)에서 직교할 때, 다음 중 상수 a,b,c의 값으로 옳은 것은?
 - ① a = -3, b = 3, c = -11 ② a = -3, b = 3, c = -12
 - ③ a = 3, b = -3, c = -13 ④ a = 3, b = 3, c = -15
 - \bigcirc a = 3, b = 3, c = -16

- (i) 두 직선이 직교하므로 기울기의 곱이 -1이다. $\Rightarrow \frac{a}{2} \times \left(-\frac{2}{b}\right) = -1$
- (ii) 두 직선이 모두 점 (2,4)를 지난다.
- \Rightarrow 2a 8 + 2 = 0, 4 + 4b + c = 0
 - (i), (ii) 를 연립하면, $a=3,\ b=3,\ c=-16$

25. 다음 연립방정식이 x = y = 0 이외의 해를 가질 때, k의 값은?

 $\bigcirc \frac{5}{2} \qquad \bigcirc 2 - \frac{5}{2} \qquad \bigcirc 3 \frac{3}{2} \qquad \bigcirc 4 - \frac{3}{2} \qquad \bigcirc 5 \frac{5}{3}$

 $x + 2y = 0 \cdots \bigcirc,$

 $3x + y = kx \cdots \bigcirc$

 \bigcirc - \bigcirc × 2하면 (2k-5)x=0 \bigcirc × (3-k) - \bigcirc 하면 (2k-5)y=0따라서 $k \neq \frac{5}{2}$ 일 때

x = y = 0 $k = \frac{5}{2}$ 일 때

(참고) $k \neq \frac{5}{2}$ 일 때 두 직선은 원점에서 만나고, $k=rac{5}{2}$ 일 때 두 직선은 모두

원점을 지나면서 일치한다.

결국 기울기가 같으면 되므로 처음부터 $-\frac{1}{2} = k - 3 으로 해도 된다.$