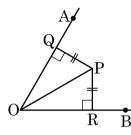

1. 폭이 일정한 종이테이프를 다음 그림과 같이 접었다. $\triangle ABC$ 는 어떤 삼각형인지 구하여라.

- 답:
- ▷ 정답 : 이등변삼각형

해설 종이를 접었으므로 ∠BAC = ∠DAC 이다. ∠DAC = ∠BCA (엇 각) 이다. 따라서 ∠BAC = ∠ACB 이므로 ΔABC 는 이등변삼각형이다. **2.** 다음 그림과 같은 ΔABC 와 ΔDEF 가 합동일 때, \overline{DE} 의 길이와 $\angle D$ 의 크기를 구하여라.

<u>cm</u>

▷ 정답: DE = 4 cm

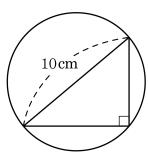

> 정답: ∠D = 30 _ °

해설

대응하는 변의 길이와 대응하는 각의 크기는 각각 같다.

 $\therefore \overline{DE} = \overline{AB} = 4(cm), \angle D = 30^{\circ}$

3. 다음 그림과 같이 ∠AOB 의 내부의 한 점 P 에서 각 변에 수선을 그어 그 교점을 Q, R 이라 하자. PQ = PR 이라면, OP 는 ∠AOB 의 이등분선임을 증명하는 과정에서 △QOP ≡ △ROP 임을 보이게 된다. 이 때 사용되는 삼각형의 합동 조건은?

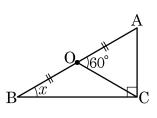


- ① 두 변과 그 사이 끼인각이 같다.
- ② 한 변과 그 양끝각이 같다.
- ③ 세 변의 길이가 같다.
- ④ 직각삼각형의 빗변과 한 변의 길이가 각각 같다.
- ⑤ 직각삼각형의 빗변과 한 예각의 크기가 각각 같다.

해설

 $\overline{\text{OP}}$ 는 공통이고 $\overline{\text{PQ}}=\overline{\text{PR}}$ 이므로, 빗변과 다른 한 변의 길이가 같은 RHS 합동이다.

4. 다음 그림과 같이 빗변의 길이가 10cm 인 직각삼각형의 외접원의 반지름의 길이를 구하면?

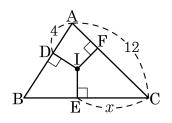

① 2cm ② 3cm ③ 4cm ④ 5cm ⑤ 6cm

직각삼각형의 외심은 빗변의 중점에 있으므로 빗변의 중점이

외접원의 중심이 된다.
$$(외접원의 반지름의 길이) = \frac{(빗변의 길이)}{2} = 5(cm)$$

해설

5. 다음 그림과 같이 ∠C = 90° 인 직각삼각형 ABC 의 빗변 AB 의 중점을 O 라 하자. ∠AOC = 60° 일 때, ∠x 의 크기는?

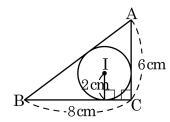

①
$$10^{\circ}$$
 ② 20° ③ 30° ④ 40° ⑤ 50°

직각삼각형의 외심은 빗변의 중점이므로
$$\overline{AO}=\overline{CO}=\overline{BO}$$
 $\overline{BO}=\overline{CO}$ 이므로 ΔBOC 는 이등변삼각형이다. 따라서 $\angle OCB=\angle B=x$ 삼각형의 한 외각의 크기는 두 내각의 합과 같으므로 $x+x=60^\circ$

해설

 $\therefore x = 30^{\circ}$

6. 다음 그림에서 점 $I \leftarrow \triangle ABC$ 의 내심이다. x의 값을 구하여라.


답:

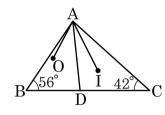
▷ 정답: 8

해설

점 I는 $\triangle ABC$ 의 내심이므로, $\overline{AD}=\overline{AF}$ 이고, $\overline{CE}=\overline{CF}$ 이다. 따라서 4+x=12이므로 x=8이다.

7. 다음 그림에서 점 I 는 $\triangle ABC$ 의 내심이다. 내접원의 반지름의 길이는 2cm 이고, $\triangle ABC$ 는 직각삼각형일 때, $\triangle ABC$ 의 둘레의 길이를 구하여라.

cm


N TIEL .

답:

▷ 정답: 24 cm

해설

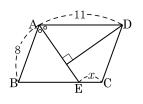
 \triangle ABC 의 넓이가 $6 \times 8 \times \frac{1}{2} = 24$ 이므로 $\frac{1}{2} \times 2 \times (\triangle$ ABC의 둘레의 길이) = 24 따라서 \triangle ABC 의 둘레의 길이는 24cm 이다. 8. 다음 그림에서 점 O 는 \triangle ABD 의 외심이고 점 I 는 \triangle ADC 의 내심이다. \angle B = 56 °, \angle C = 42 ° 이고 \overline{AD} = \overline{CD} 일 때, \angle OAI 의 크기를 구하여라.

$$\angle OAD = (180^{\circ} - 56^{\circ} \times 2) \div 2 = 34^{\circ}$$

 $\angle IAD = 42^{\circ} \div 2 = 21^{\circ}$

$$\therefore$$
 $\angle OAI = 34^{\circ} + 21^{\circ} = 55^{\circ}$

9. 다음 조건 중에서 사각형 ABCD 는 평행 사변형이 될 수 <u>없는</u> 것은?

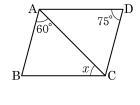

$$\overline{\text{(1)}}\overline{\text{AD}}//\overline{\text{BC}}, \overline{\text{AB}} = \overline{\text{DC}}$$

- ② $\angle A = \angle C, \angle B = \angle D$
- ③ $\angle B + \angle C = 180^{\circ}, \angle A + \angle B = 180^{\circ}$
- ④ $\overline{AO} = \overline{CO}$, $\overline{BO} = \overline{DO}$ (점 O는 대각선의 교점이다.
- \bigcirc $\overline{AD}//\overline{BC}, \overline{AB}//\overline{DC}$

해설

① 반례는 등변사다리꼴이 있다.

10. 다음 그림의 평행사변형 ABCD 에서 *x* 의 값을 구하여라.

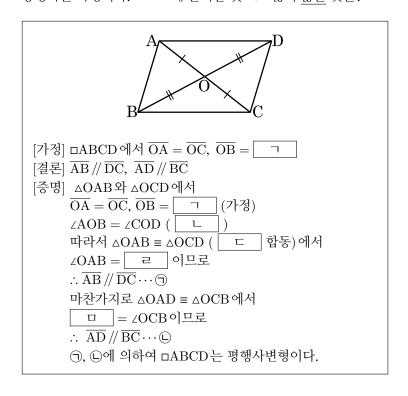


 $\overline{AD} = \overline{BC} = 11$ $\angle DAE = \angle AEB$ (엇각)

 $\therefore x = 11 - 8 = 3$

 $\overline{AB} = \overline{BE} = 8$

11. 다음 그림과 같은 평행사변형 ABCD 에서 $\angle x$ 의 크기는?

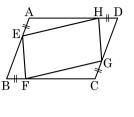


$$\angle BAD + \angle ADC = 180^{\circ},$$

 $60^{\circ} + \angle ACB + 75^{\circ} = 180^{\circ},$

 $\angle ACB = 180^{\circ} - 60^{\circ} - 75^{\circ} = 45^{\circ}$

$$\therefore$$
 $\angle x = 45^{\circ}$


12. 다음은 '두 대각선이 서로 다른 것을 이등분하면 평행사변형이다.' 를 증명하는 과정이다. ㄱ~ㅁ에 들어갈 것으로 옳지 않은 것은?

- ① ㄱ : OD ② ㄴ : 맞꼭지각 ③ ㄷ : SAS
- ④ = : ∠OCD ⑤ □ : ∠ODA

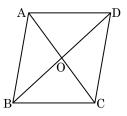
해설

변형이 된다. 그 이유를 고르면?

$$\overline{\mathrm{EH}} = \overline{\mathrm{FG}}$$

$$\overline{\text{EH}}/\overline{\text{FG}}$$
, $\overline{\text{EH}} = \overline{\text{FG}}$

13. 다음 그림의 평행사변형 ABCD 에서 $\overline{AE} = \overline{BF} = \overline{CG} = \overline{DH}$ 일 때, $\Box EFGH$ 는 평행사


$$\overline{\text{EF}} = \overline{\text{HG}} \; , \; \overline{\text{EH}} = \overline{\text{FG}}$$

 \bigcirc $\overline{EH}//\overline{FG}$, $\overline{EF}//\overline{HG}$

$$\bigcirc$$
 \angle EFG = \angle GHE

일 때. □ABCD 의 넓이는?

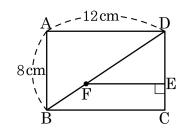
14. 다음 그림과 같이 평행사변형 ABCD 의 두 대 각선의 교점을 O 라 하자. $\triangle AOD = 18cm^2$

 72cm^2

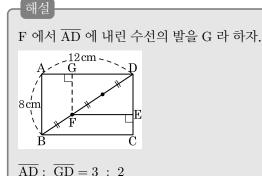
① $36cm^2$

(4) 90cm²

- $(5) 108 \text{cm}^2$


 $\bigcirc 54 \text{cm}^2$

 $\triangle BOC$ 와 $\triangle AOD$ 는 같다.


 $\triangle AOD + \triangle BOC = \triangle AOB + \triangle DOC$ 이다.

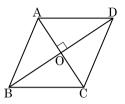
그러므로 평행사변형 ABCD 는 72cm² 이다.

15. 오른쪽 그림의 직사각형 ABCD 에서 $\overline{AD}=12\mathrm{cm},\ \overline{AB}=8\mathrm{cm}$ 이고 점 F 는 대각선 \overline{BD} 를 삼등분하는 한 점이다. \overline{F} 에서 \overline{DC} 에 그은 수선의 발을 \overline{E} 라 할 때, \overline{FE} 의 길이는?

 $\therefore \overline{GD} = \frac{2}{3} \times \overline{AD} = 8(cm)$

따라서 $\overline{\text{FE}} = \overline{\text{GD}} = 8(\text{cm})$

16. 다음 보기 중에서 평행사변형이 직사각형이 되기 위한 조건을 모두 몇 개인가?


보기

- ① 이웃하는 두 변의 길이가 같다.
- © 이웃하는 두 각의 크기가 같다.
- © 한 내각의 크기가 90°이다.
- ② 두 대각선은 서로 다른 것을 이동분한다.
- ◎ 두 대각선의 길이가 같다.
- ① 1 개② 2 개③ 3 개④ 4 개⑤ 5 개

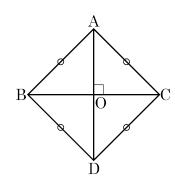
해설

- ① 마름모가 될 조건
- © 직사각형이 될 조건
- ② 직사각형이 될 조건
- ② 평행사변형이 될 조건 ② 직사각형이 될 조건
- ∴ ᠍, ᠍, 의 3 개

17. 다음 그림과 같은 평행사변형 ABCD 에서 AC⊥BD 일 때, □ABCD 는 어떤 사각형인 가?

③ 직사각형

사다리꼴
 정사각형


- (S)
- 마름모

해설

마름모의 두 대각선은 서로 수직이등분하므로 $\overline{
m AC}oldsymbol{\perp}\overline{
m BD}$ 이면 평행사변형 m ABCD 는 마름모가 된다.

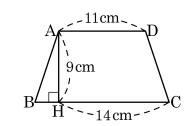
② 등변사다리꼴

18. 다음 그림의 마름모 ABCD 가 정사각형이 되기 위한 조건을 보기에서 모두 찾아라.

 $\bigcirc \overline{AB}//\overline{CD}$ $\bigcirc \overline{AD} = \overline{BC}$

© $\angle B + \angle D = 180^{\circ}$ © $\overline{BC} = \overline{CD}$

답:

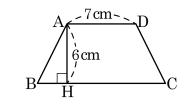

답:

▷ 정답: □

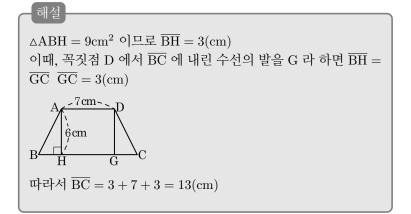
▷ 정답 : 由

해설

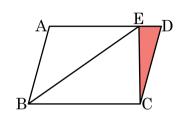
마름모가 정사각형이 될 조건 두 대각선의 길이가 같다. \rightarrow \bigcirc $\overline{AC}=\overline{BD}$ 한 내각이 90°이다. \rightarrow \bigcirc $\angle A=90°$ 19. 다음 그림의 $\square ABCD \leftarrow \overline{AD} / / \overline{BC}$ 인 등변사다리꼴이다. $\overline{AH} = 9cm$, $\overline{AD} = 11cm$, $\overline{CH} = 14cm$ 일 때, $\square ABCD$ 의 넓이를 구하여라.


 cm^2

$$\overline{BH} = \overline{HC} - \overline{AD} = 14 - 11 = 3(cm)$$


$$\overline{BC} = 3 + 14 = 17(cm)$$

$$\therefore$$
 (넓이) = $(11 + 17) \times 9 \times \frac{1}{2} = 126 (cm^2)$


20. \Box ABCD 는 \overline{AD} // \overline{BC} 인 등변사다리꼴이다. 그림에서 \triangle ABH = 9cm^2 일 때, \overline{BC} 의 길이는?

① 9cm ② 10cm ③ 11cm ④ 12cm ⑤ 13cm

21. 다음 그림과 같이 넓이가 100cm^2 인 평행사변형 ABCD 에서 $\overline{\text{AD}}$ 위의 점 $\overline{\text{E}}$ 에 대하여 $\overline{\text{AE}}$: $\overline{\text{DE}}$ = 4:1 일 때 ΔECD 의 넓이를 구하여라.

 cm^2

▷ 정답: 10 cm²

답:

ΔABE , ΔECD , ΔEBC 의 높이는 모두 같다.

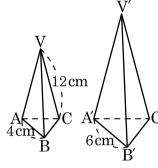
 $\overline{AE} + \overline{ED} = \overline{BC}$ 이므로, $\triangle ABE + \triangle ECD = \triangle EBC$ 이다.

따라서 $\triangle ABE + \triangle ECD = 50 \text{cm}^2$ 이다. $\triangle ECD : \triangle ABE = 1 : 4 = 10 \text{cm}^2 : 40 \text{cm}^2$

 $\therefore \triangle ECD = 10cm^2$

22. 다음 중 항상 닮은 도형이라고 할 수 있는 것은?

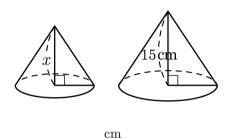
① 두 삼각기둥


④ 두 직육면체

- ② 두 사각뿔
 - ⑤ 두 오각뿔

③ 두 정사면체

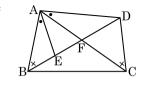
해설


정사면체는 모든 면이 정삼각형으로 이루어져 있으므로 항상 닮은 도형이다. **23.** 다음 그림에서 두 삼각뿔 V - ABC 와 V' - A'B'C' 는 닮은 도형이다. $\overline{AB} = 4cm$, $\overline{VC} = 12cm$, $\overline{A'B'} = 6cm$, $\angle ACB = 52^{\circ}$ 일 때, $\overline{V'C'}$ 의 길이와 $\angle A'C'B'$ 의 크기를 바르게 묶어두 것은?

 $\overline{AB} : \overline{A'B'} = \overline{VC} : \overline{V'C'}$ $4 : 6 = 12 : \overline{V'C'}$ $4\overline{V'C'} = 72, \overline{V'C'} = 18(cm)$

 $\angle A'C'B' = \angle ACB = 52^{\circ}$

24. 다음 그림에서 두 원뿔이 서로 닮은 도형이고, 각각의 밑면인 원의 원주의 길이가 각각 $16\pi\mathrm{cm}$, $20\pi\mathrm{cm}$ 일 때, 작은 원뿔의 높이 x를 구하여라.

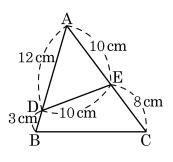

▷ 정답: 12cm

답:

해설

밑면의 둘레가 각각 16π cm, 20π cm 이므로 밑면의 반지름의 길이는 각각 8cm, 10cm 이다. 두 원기둥이 서로 닮은 도형 이므로 밑면의 반지름의 길이의 비는 높이의 비와 같으므로 8:10=x:15. x=12 cm 이다.

25. 다음 그림에서 $\angle BAE = \angle CAD$, $\angle ABE = \angle ACD$ 일 때, 다음 중 $\triangle ABC$ 와 닮은 도형인 것은?


① $\triangle ABE$ ② $\triangle ADC$ ③ $\triangle BCF$

∠ABE = ∠ACD, ∠BAE = ∠CAD 이므로

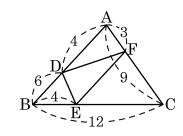
△ABE ∽ △ACD (AA 닮음)

 $\triangle ABC$ 와 $\triangle AED$ 에서 $\angle BAC = \angle EAD$, $\overline{AB} : \overline{AE} = \overline{AC} : \overline{AD}$

(∵ △ABE ∽ △ACD) 이므로 SAS 닮음이다. ∴ △ABC ∽△AED (SAS 닮음) **26.** 다음 그림에서 \overline{BC} 의 길이는?

① 13cm ② 14cm ③ 15cm ④ 16cm ⑤ 17cm

∠A가 공통이고,

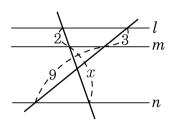

 $\overline{AB} : \overline{AE} = \overline{AC} : \overline{AD} = 3 : 2$ 이므로

△ABC ∽ AED (SAS 닮음)

 $3:2=\overline{\mathrm{BC}}:10$

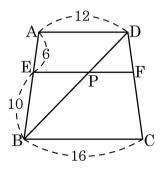
 $\overline{\mathrm{BC}} = 15 \mathrm{(cm)}$

27. 다음 그림의 \overline{DE} , \overline{EF} , \overline{FD} 중에서 $\triangle ABC$ 의 변에 평행한 선분을 구하여라.


답:

▷ 정답: EF

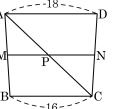
- 해설


 $\overline{CA}: \overline{FA}=\overline{CB}: \overline{EB}\,,\,9:\,3=12:4$ 가 성립하므로 $\overline{EF}//\overline{AB}$ 이다.

28. 다음 그림에서 세 직선이 l // m // n 일 때, x 의 값을 구하여라.

$$3:9=2:x$$
 이므로 $x=6$

 ${f 29}.$ 다음 그림에서 ${f AD}$ $\# {f EF}$ $\# {f BC}$ 일 때, ${f EP}$ - ${f PF}$ 의 값을 구하여라.



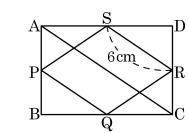
$$\triangleright$$
 정답: $\frac{3}{2}$

$$10 : 16 = \overline{EP} : 12 : \overline{EP} = \frac{15}{2}$$

6:
$$16 = \overline{PF}$$
: 16 \therefore $\overline{PF} = 6$
 \therefore $\overline{EP} - \overline{PF} = \frac{15}{2} - 6 = \frac{3}{2}$

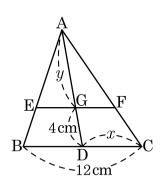
30. 다음 그림은 \overline{AD} $//\overline{BC}$ 인 사다리꼴 ABCD 이다. 점 M, N 이 각각 \overline{AB} , \overline{DC} 의 중점일 때, \overline{MP} 의 길이를 a, \overline{PN} 의 길이를 b, \overline{MN} 의 길이를 c 라고 할 때 a+b+c를 구하여라.

$$\overline{MP} = \frac{1}{2}\overline{BC} = \frac{1}{2} \times 16 = 8(cm) ,$$


$$= 1 - 1$$

$$\overline{PN} = \frac{1}{2}\overline{AD} = \frac{1}{2} \times 18 = 9(cm) ,$$

$$\overline{MN} = \overline{MP} + \overline{PN} = 8 + 9 = 17(cm) ,$$


$$\therefore a + b + c = 34$$

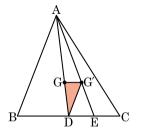
31. 직사각형 ABCD 에서 각 변의 중점 P,Q,R,S 를 연결한 □PQRS 는 마름모이다. □PQRS 의 한 변의 길이가 6 cm 일 때, $\overline{\text{AC}}$ 의 길이는?

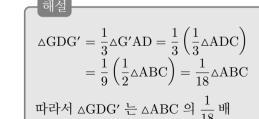
$$\overline{AC} = 2\overline{SR} = 2 \times 6 = 12(cm)$$

32. 다음 그림에서 점 G는 \triangle ABC의 무게중심일 때, $\frac{x}{y}$ 의 값은?

$$\frac{1}{5}$$

$$\frac{4}{3}$$


$$\overline{\mathrm{BD}} = \overline{\mathrm{CD}} = x(\,\mathrm{cm})$$
이므로 $x = 6$
 $2:1=y:4$


$$y = 8$$

$$\therefore \frac{x}{y} = \frac{6}{8} = 0.75$$

33. 점 G, G' 는 △ABC, △ADC 의 무게중심일 때, △GDG' 의 넓이는 △ABC 의 넓이의 몇 배인가?

①
$$\frac{1}{6}$$
 바 ② $\frac{1}{12}$ 바 ③ $\frac{1}{18}$ 바 ④ $\frac{1}{36}$ 바 ⑤ $\frac{1}{42}$ 바

