- 1. $2 + \sqrt{3} = \sqrt{a + b\sqrt{3}}(a, b$ 는 유리수) 일 때, a b의 값은?
 - ① -2 ② -1 ③ 1 ④ 2
- **⑤**3

 $2+\sqrt{3}=\sqrt{a+b\sqrt{3}}$ 양변을 제곱하면

 $4 + 3 + 4\sqrt{3} = a + b\sqrt{3}$

 $\therefore a = 7, b = 4 \quad \therefore a - b = 7 - 4 = 3$

2. $y = \sqrt{4x - 12} + 5$ 의 그래프는 함수 $y = 2\sqrt{x}$ 의 그래프를 x 축으로 a, y 축으로 b만큼 평행이동한 것이다.a + b 의 값을 구하여라.

▶ 답:

▷ 정답: 8

해설

 $y = 2\sqrt{x-3} + 5$ 이므로,

이것은 $y = 2\sqrt{x}$ 의 그래프를 x 축 방향으로 3만큼, y 축 방향으로 5만큼 평행이동한 그래프의 함수이다. 즉, a = 3, b = 5

 $\therefore a+b=8$

3. $y = \sqrt{4x-12} + 5$ 의 그래프는 함수 $y = 2\sqrt{x}$ 의 그래프를 x축으로 α , y축으로 $oldsymbol{eta}$ 만큼 평행이동한 것이다. $lpha+oldsymbol{eta}$ 의 값을 구하여라

▶ 답: ▷ 정답: 8

해설

 $y = 2\sqrt{x-3} + 5$ 이므로, 이것은 $y = 2\sqrt{x}$ 의 그래프를

x축 방향으로 3만큼, y축 방향으로 5만큼

평행이동한 그래프의 함수이다. $\stackrel{>}{\lnot}$, $\alpha = 3$, $\beta = 5$

 $\therefore \alpha + \beta = 8$

4. 첫째항이 6, 공차가 -5인 등차수열 $\{a_n\}$ 에서 -44는 제 몇 항인가?

① 10 ② 11 ③ 12 ④ 13 ⑤ 14

첫째항이 6이고, 공차가 5이므로 일반항은 a_n 은

 $a_n = 6 + (n-1) \cdot (-5) = -5n + 11$ -5n + 11 = -44

5n + 11 = 44 $5n = 55 \therefore n = 11$

해설

수열 1, -10, 10^2 , -10^4 , \cdots 은 첫째항이 a, 공비가 r 인 등비수열이다. 이 때, a+r의 값은? **5.**

① -10

 $\bigcirc -9$ 3 -8 4 -7 5 -6

해설 a = 1, r = -10

 $\therefore a + r = -9$

수열 $\{a_n\}$ 이 $a_1=1,\ a_{10}=30$ 을 만족할 때 $\sum_{k=1}^9 a_{k+1} - \sum_{k=2}^{10} a_{k-1}$ 의 6. 값은?

① 26

② 27

③ 28 ④ 29

⑤ 30

 $\sum_{k=1}^{9} a_{k+1} - \sum_{k=2}^{10} a_{k-1}$ $= (a_2 + a_3 + \dots + a_9 + a_{10}) - (a_1 + a_2 + \dots + a_9)$ $= -a_1 + a_{10} = -1 + 30 = 29$

7. 16의 네제곱근 중 실수인 것의 곱을 P, 27의 세제곱근 중 허수인 것의 Q라 할 때, $P \times Q$ 의 값은?

① -36 ②-12 ③ 4 ④ 12 ⑤ 36

 $x^4 = 16, x^3 = -27$ 을 만족하는 x를 구한다. 16의 네제곱근 중 실수인 것은

 $\sqrt[4]{16} = 2, -\sqrt[4]{16} = -2$ $\therefore P = -4$

해설

-27의 세제곱근을 X라 하면 $x^3 = -27, (x+3) + (x^2 - 3x + 9) = 0$

이때, -27의 세제곱근 중 허수인 것의 합은 방정식 $x^2 - 3x + 9 = 0$ 의 두근의 합과 같다.

 $\therefore Q = 3$ $\therefore P \times Q = -12$

- 8. $a^{\frac{1}{2}} \times a^{-\frac{1}{3}} \div a^{\frac{3}{2}}$ 을 간단히 하면?
 - ① $a\sqrt[3]{a}$
- $\bigcirc a\sqrt{a}$

해설 $a^{\frac{1}{2} - \frac{1}{3} - \frac{3}{2}} = a^{\frac{3-2-9}{6}}$ $= a^{\frac{-8}{6}} = a^{\frac{-4}{3}} = \frac{1}{a\sqrt[3]{a}}$

- $(\log_2 3 + 2\log_4 7)\log_{\frac{4}{\sqrt{21}}} 8$ 의 값은? 9.
 - $4 \log_2 3$ $6 \log_2 5$

① 4

- ② 6
- **3**12

밑의 변환 공식을 이용하여 밑을 같게 한 후 계산한다. $(\log_2 3 + 2\log_4 7)\log_{\sqrt[4]{21}} 8$

$$= \left(\log_2 3 + 2\frac{\log_2 7}{\log_2 4}\right) \cdot \frac{1}{\log_2 4}$$

$$\begin{aligned} &(\log_2 3 + 2\log_4 7)\log_{\frac{4}{21}} 8 \\ &= \left(\log_2 3 + 2\frac{\log_2 7}{\log_2 4}\right) \cdot \frac{\log_2 8}{\log_2 \frac{4}{21}} \\ &= \left(\log_2 3 + 2\frac{\log_2 7}{\log_2 2^2}\right) \cdot \frac{\log_2 2^3}{\log_2 21^{\frac{1}{4}}} \\ &= \left(\log_2 3 + 2\frac{\log_2 7}{2\log_2 2}\right) \cdot \frac{3\log_2 2}{\frac{1}{4}\log_2 21} \\ &= (\log_2 3 + \log_2 7) \cdot \frac{12}{\log_2 21} \\ &= \log_2 21 \cdot \frac{12}{\log_2 21} = 12 \end{aligned}$$

$$= (\log_2 3 + \log_2 7) \cdot \frac{12}{\log_2 21}$$

$$= \log_2 21 \cdot \frac{1}{\log_2 21} = 1$$

- 10. $\log_3 2 = a$, $\log_3 5 = b$ 라고 할 때, $\log_8 125$ 를 a, b로 나타내면?

① 1-2b

- ② 2b-a ③ a-b
- $\Im \frac{a}{b}$

해설 $\log_3 2 = a \quad \log_3 5 = b$ $\log_8 125 = \log_{2^3} 5^3 = \log_2 5$

 $=\frac{\log_3 5}{\log_3 2}=\frac{b}{a}$

11.
$$x = \sqrt{3 + \sqrt{5}}, y = \sqrt{3 - \sqrt{5}}$$
일 때, 식 $\frac{x + y}{x - y} - \frac{x - y}{x + y}$ 의 값은?

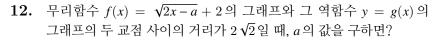
- $\frac{2}{5}\sqrt{5}$ ② $-\frac{2}{5}\sqrt{5}$ ③ $\frac{4}{5}\sqrt{5}$ ④ ① $\sqrt{5}$

$$= \frac{x^2 + 2xy + y^2 - x^2 + 2xy - y}{x^2 - y^2}$$

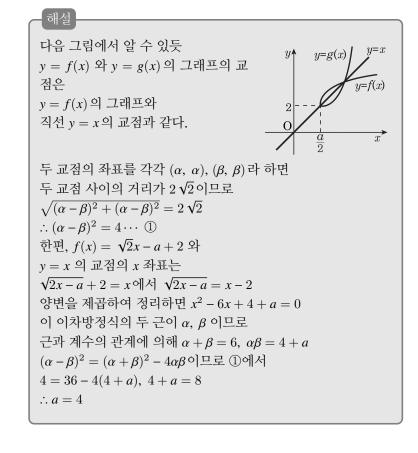
$$4xy \qquad 4 \times 2$$

$$x^2 - y^2 \qquad 2\sqrt{5}$$

$$= \frac{4\sqrt{5}}{5}$$



 $\frac{1}{4}$ ② $\frac{1}{2}$ ③ $\sqrt{2}$ ④ 2 ⑤ 4



13. 수열 $\log \frac{1000}{3}$, $\log \frac{1000}{9}$, $\log \frac{1000}{27}$, $\log \frac{1000}{81}$, \cdots 에서 첫째항부터 몇째 항까지의 합이 최대가 되는가? (단, $\log 3 = 0.4771$)

① 제 5 항 ② 제 6 항 ④ 제 8항⑤ 제 9항

③ 제 7항

 $\log \frac{1000}{3} = \log 10^3 - \log 3$ $= 3 - \log 3$ $\log \frac{1000}{9} = 3 - 2\log 3$

 $\log \frac{1000}{27} = 3 - 3\log 3$ 이므로 주어진 수열은 $a = 3 - \log 3$

 $d = -\log 3$ 인 등차수열 $a_n = (3 - \log 3) + (n - 1) \cdot (-\log 3)$ $= 3 - n \cdot \log 3$

그런데 $\log 3 = 0.4771$ 이므로 $a_6 = 3 - 6\log 3 = 0.1374$

 $a_7 = 3 - 7 \log^3 = -0.3397$ ∴ 6번째 항까지의 합이 최대

14. 두 수열 $\{a_n\}$ 과 $\{b_n\}$ 의 첫째항부터 제n항까지의 합이 각각 n^2+kn , $2n^2-2n+1$ 일 때, $a_{10}=b_{10}$ 을 만족하는 상수 k의 값을 구하여라.

답:▷ 정답: 17

, 00.

 $a_{10} = (10^2 + 10k) - (9^2 + 9k) = 19 + k$ $b_{10} = (2 \cdot 10^2 - 2 \cdot 10 + 1) - (2 \cdot 9^2 - 2 \cdot 9 + 1)$ = 181 - 145 = 36 $a_{10} = b_{10} \, \text{and} \, 19 + k = 36$

 $\therefore k = 17$

- **15.** 다섯 개의 수 10, a, b, c, 90은 이 순서대로 등차수열을 이루고, 10, d, e, f, 90은 이 순서대로 등비수열을 이룬다. 이때, b+e의 값을 구하여라.
 - ▷ 정답: 80

▶ 답:

b는 10과 90의 등차중항이므로

 $b = \frac{10 + 90}{2} = 50$

e는 10과 90의 등비중항이므로

 $e = \sqrt{10 \times 90} = 30 \quad \therefore b + e = 80$

- 16. 첫째항부터 제 n항까지의 합 $S_n = 3 \cdot 2^n + k$ 로 나타내어지는 수열 $\{a_n\}$ 이 첫째항부터 등비수열이 되기 위한 상수 k의 값은?
 - ① 0 ② -1 ③ -2 $\bigcirc -3$ $\bigcirc -4$

 $n \ge 2$ 일 때,

해설

 $a_n = S_n - S_{n-1}$

 $= (3 \cdot 2^{n} + k) - (3 \cdot 2^{n-1} + k) = 3 \cdot 2^{n-1}(2 - 1) = 3 \cdot 2^{n-1} \cdots \bigcirc$

따라서, $n \ge 2$ 일 때, 수열 $\{a_n\}$ 이 첫째항부터 등비수열이 되려면 \bigcirc 이 n=1일 때에도 성립해야 하므로 $3 = 6 + k \quad \therefore \quad k = -3$

17. 다음을 계산하여라.

 $1 \cdot 1 + 2 \cdot 4 + 3 \cdot 7 + \dots + 10 \cdot 28$

답:

▷ 정답: 1045

 $1 \cdot 1 + 2 \cdot 4 + 3 \cdot 7 + \dots + 10 \cdot 28$ $= \sum_{k=1}^{10} k \cdot (3k - 2)$ $= \sum_{k=1}^{10} (3k^2 - 2k)$ $= 3 \sum_{k=1}^{10} k^2 - 2 \sum_{k=1}^{10} k$ $= 3 \cdot \frac{10 \cdot 11 \cdot 21}{6} - 2 \cdot \frac{10 \cdot 11}{2}$ = 1155 - 110 = 1045

18. 오른쪽 그림처럼 바둑판 모양의 칸에 1부터 시계 방향으로 차례로 자연수를 배열하였다. 이때, 1 아래로 생기는 수열 1, 4, 15, 34, ··· 에서 제 10항의 일의 자리 수는?

21	22	23	24	25	26
20	7	8	9	10	27
19	6	1	2	11	28
18	5	4	3	12	29
17	16	15	14	13	30
•••	• • •	34	33	32	31

① 3 ② 4 ③ 5 ④ 6 ⑤ 7

수열 1, 4, 15, 34, 61, · · · 1, 4, 15, 34, 61, · · · , a_{10} V V V V

3, 11, 19, 61, \cdots , b_9 이므로 $b_k = 3 + (k-1)8 = 8k - 5$

 $\therefore a_{10} = 1 + \sum_{k=1}^{9} (8k - 5) = 1 + 8 \cdot \frac{9 \cdot 10}{2} - 5 \cdot 9 = 316$

따라서, 일의 자리 수는 6이다.

19.
$$a = \frac{\log_3(\log_5 7)}{2\log_3 2}$$
일 때, 4^a 의 값은?

 $a = \frac{\log_3(\log_5 7)}{2\log_3 2}$ $= \frac{\log_3(\log_5 7)}{\log_3 2^2}$ $= \frac{\log_3(\log_5 7)}{\log_3 4} = \log_4(\log_5 7)$ $\therefore 4^a = \log_5 7$

20. 다음을 간단히 하여라.

$$\log_2 \sqrt{2x + 2\sqrt{x^2 - 1}} + \log_2(\sqrt{x + 1} - \sqrt{x - 1})$$
 (단, $x > 1$)

▶ 답:

▷ 정답: 1

해설 $\log_2 \sqrt{(\sqrt{x+1} + \sqrt{x-1})^2 + \log_2(\sqrt{x+1} - \sqrt{x-1})}$

$$= \log_2(\sqrt{x+1} + \sqrt{x-1})(\sqrt{x+1} - \sqrt{x-1})$$
$$= \log_2\{(x+1) - (x-1)\} = \log_2 2 = 1$$

21. $2^x = a$, $2^y = b$ 일 때, $\log_{2ab} a^3 b^2$ 을 x, y로 나타내면?

①
$$\frac{3x + 2y}{1 + x + y}$$
 ② $\frac{2x + 3y}{2 + x + y}$ ③ $\frac{2 + x + y}{3x + 2y}$ ④ $\frac{x^2y^2}{4xy}$ ⑤ $\frac{4xy}{x^3y^2}$

$$\begin{array}{ccc}
4) & \frac{3}{4xy} & & & \\
\hline
5) & \frac{33y}{x^3y^2}
\end{array}$$

$$3x + 2y$$

$$\log_{2ab} a^3 b^3 = \log_{2 \cdot 2^{x} \cdot 2}$$

$$2^{x} = a, \ 2^{y} = b \cap \square \exists$$

$$\log_{2ab} a^{3}b^{3} = \log_{2 \cdot 2^{x} \cdot 2^{y}} (2^{x})^{3} \cdot (2^{y})^{2}$$

$$= \log_{2^{1+x+y}} 2^{3x+2y}$$

$$= \frac{3x+2y}{1+x+y} \log_{2} 2 = \frac{3x+2y}{1+x+y}$$

$$1+\lambda+y$$
 $1+\lambda+y$

22. 다음 상용로그표를 이용하여 $\log \sqrt[3]{0.138}$ 의 소수 부분을 구하여라.
 수
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

				1 -		-	-		-	
1.0	.0000	.0043	.0086	.0128	.0170	.0212	.0253	.0294	.0334	.0374
1.1	.0414	.0453	.0492	.0531	.0569	.0607	.0645	.0682	.0719	.0755
1.2	.0792	.0828	.0864	.0899	.0934	.0969	.1004	.1038	.1072	.1106
1.3	.1139	.1173	.1206	.1239	.1271	.1303	.1335	.1367	.1399	.1430
1.4	.1461	.1492	.1523	.1553	.1584	.1614	.1644	.1673	.1703	.1732

▶ 답: ▷ 정답: 0.7133

상용로그표에서 $\log 1.38 = 0.1399$ 이므로

log $\sqrt[3]{0.138} = \frac{1}{3} \log 0.138 = \frac{1}{3} \log (1.38 \times 10^{-1})$
□ 라 라 서 $= \frac{1}{3} (\log 1.38 - 1) = \frac{1}{3} (0.1399 - 1)$ = -0.2867 = -1 + 0.7133 $\log \sqrt[3]{0.138}$ 의 소수 부분은 0.7133이다.

- **23.** 어떤 방사능 물질이 일정한 비율로 붕괴되어 x년 후에는 방사능이 $y=y_0a^{-x}$ 이 남는다고 한다. 2년 후의 방사능이 초기의 방사능의 $\frac{1}{2}$ 이 되었다고 할 때, 8년 후의 y의 값을 구하면? (단, y_0 는 상수, a>0)
 - ① $\frac{1}{4}y_0$ ② $\frac{1}{8}y_0$ ③ $\frac{1}{16}y_0$ ④ $\frac{1}{32}y_0$ ⑤ $\frac{1}{64}y_0$

x년 후 방사능의 양 $y = y_0 a^{-x}$ 이므로 초기 방사능의 양= $y_0 a^{-0} = y_0$ 2년 후 방사능의 양= $y_0 a^{-2}$ $y_0 \cdot a^{-2} = \frac{1}{2} y_0$ 즉 $a^{-2} = \frac{1}{2}$ 8년 후 방사능의 양 $y = y_0 a^{-8} = y_0 (a^{-2})^4$

 $y = y_0 a^{-8} = y_0 (a^{-2})^4$ $= y_0 (\frac{1}{2})^4$ $= \frac{1}{16} y_0$

16

24. 각 항이 서로 다른 자연수인 등비수열 a_1, a_2, a_3, a_4, a_5 에 대하여

 $P = a_1 + a_2 + a_3 + a_4 + a_5$

 $Q = a_1 - a_2 + a_3 - a_4 + a_5$ $R = a_1^2 + a_2^2 + a_3^2 + a_4^2 + a_5^2$ 이라 할 때, 다음 중 옳은 것은?

①
$$P^{2} + Q^{2} = R$$
 ② $P + Q = R$ ③ $PQ = R$ ④ $\frac{1}{P} + \frac{1}{Q} = R$ ⑤ $\frac{1}{P} + \frac{1}{Q} = \frac{1}{R}$

해설
등비수열
$$a_1,\ a_2,\ a_3,\ a_4,\ a_5$$
의 공비를 r 이라 하면

지수얼
$$a_1, a_2, a_3, a_4, a_5$$
의 중비를 가하면 하면
$$P = \frac{a_1(1 - r^5)}{1 - r}$$

$$Q = \frac{a_1(1 - (-r)^5)}{1 + r} = \frac{a_1(1 + r^5)}{1 + r}$$

$$R = \frac{a_1^2(1 - r^{10})}{1 - r^2} \circ] 므로$$

$$R = \frac{a_1^2(1 - r^{10})}{1 - r^2} = \frac{a_1(1 - r^5)}{1 - r} \times \frac{a_1(1 + r^5)}{1 + r} = PQ$$

$$Q = \frac{a_1(1 - (-r)^3)}{1 + r} = \frac{a_1(1 + r)^3}{1 + r}$$

$$R = \frac{1 - r^2}{1 - r^2} \circ | = =$$

$$a_1^2 (1 - r^{10}) \qquad a_1 (1 - r^5)$$

$$R = \frac{1}{1 - r^2} = \frac{1}{1 - r} \times \frac{1}{1 + r} = P$$

25. 다음과 같이 짝수들을 나열한 수열이 있다.

 $2, 2, 4, 2, 4, 6, 2, 4, 6, 8, \cdots$

100이 처음으로 나오는 항을 제 n항이라 할 때, 다음 중 제 n항까지의 모든 항의 합을 나타내는 것은?

$$\underbrace{\frac{50 \cdot 51}{3}}$$

①
$$\frac{50 \cdot 51 \cdot 52}{6}$$
 ② $\frac{50 \cdot 51 \cdot 53}{6}$ ③ $\frac{50 \cdot 51 \cdot 54}{6}$ ③ $\frac{50 \cdot 51 \cdot 54}{6}$

주어진 수열을 다음과 같이 군으로 묶으면

해설

 $(2), (2, 4), (2, 4, 6), (2, 4, 6, 8), \cdots$ $100 = 2 \times 50$ 이므로 제 50군의 마지막 항에서 처음 나온다.

$$100 = 2$$

한편, 제 n군의 모든 항의 합은 $2+4+6+\cdots+2n = \sum_{k=1}^{n} 2k = 2 \sum_{k=1}^{n} k$

$$=2\cdot\frac{n(n+1)}{2}=n(n+1)$$

$$\sum_{n=1}^{50} n(n+1) = \sum_{n=1}^{50} n^2 + \sum_{n=1}^{50} 50 \cdot 51 \cdot 101 = 50 \cdot 51 = 50 \cdot 51$$

이므로 제 1군부터 제 50군까지의 모든 항의 합은
$$\sum_{n=1}^{50} n(n+1) = \sum_{n=1}^{50} n^2 + \sum_{n=1}^{50} n$$
$$= \frac{50 \cdot 51 \cdot 101}{6} + \frac{50 \cdot 51}{2} = \frac{50 \cdot 51 \cdot 52}{3}$$

- ${f 26}$. 자연수 전체의 집합 ${f N}$ 을 정의역으로 하는 함수 ${f f}({f x})$ 가 다음과 같은 조건을 만족한다.
 - ① $x \in N$, $y \in N$ 이면 f(x+y) = f(x)f(y)이다.
 - 수열 $\{a_n\}$ 을 $a_1=1,\ a_{n+1}=f(n)\cdot a_n$ 으로 정의할 때, a_{10} 의 값은?

(단, n은 자연수이다.)

② 3^{42}

345

 $4) 3^{55}$

 \Im 3^{66}

해설 \bigcirc 에서 x = n, y = 1로 놓으면

① 3^{36}

f(n+1) = f(1)f(n) :: f(n+1) = 3f(n)수열 $\{f(n)\}$ 은 첫째항이 3, 공비가 3인 등비수열이므로 f(n)=

이때, $a_{n+1} = 3^n a_n$ 이므로 $a_n = a_1 \cdot 3^1 \cdot 3^2 \cdot 3^3 \cdots 3^{n-1} = 3^{1+2+3+\cdots+(n-1)}$

 $=3^{\frac{n(n-1)}{2}}$

 $\therefore \ a_{10} = 3^{\frac{10 \times 9}{2}} = 3^{45}$

27. 수열 $\{a_n\}$ 이 $a_n+S_n=n$ 과 같이 정의될 때, 일반항 a_n 은?(단, $n=1,\ 2,\ 3,\ \cdots,\ S_n=\sum_{k=1}^n a_k)$

해설
$$a_1 + S_1 = 1, \ S_1 = a_1 \cap \square \rightarrow 2a_1 = 1$$

$$\therefore \ a_1 = \frac{1}{2}$$

$$\begin{array}{c} a_{n+1} + S_{n+1} = n+1 \\ -\underbrace{) \ a_n + S_n = n} \\ a_{n+1} - a_n + a_{n+1} = 1 \end{array}$$
에서 $a_{n+1} = \frac{1}{2}a_n + \frac{1}{2}(n = 1, 2, 3, \cdots)$

$$\therefore \ a_{n+1} - 1 = \frac{1}{2}(a_n - 1)(n = 1, 2, 3, \cdots)$$
이때, 수열 $\{a_n - 1\}$ 은 첫째항이 $-\frac{1}{2}$, 공비가 $\frac{1}{2}$ 인 등비수열이므로
$$a_n - 1 = -\frac{1}{2}\left(\frac{1}{2}\right)^{n-1} \qquad \therefore \ a_n = 1 - \left(\frac{1}{2}\right)^n$$

$$a_n - 1 = -\frac{1}{2} \left(\frac{1}{2}\right)^{n-1} \quad \therefore \ a_n = 1 - \left(\frac{1}{2}\right)^n$$

28. $a_1 = 1, \ a_2 = 10 \$

 $rac{a_{n+2}}{a_{n+1}}=\sqrt[3]{rac{a_{n+1}}{a_n}}(n=1,\ 2,\ 3,\cdots)$ 으로 정의된 수열 $\{a_n\}$ 에 대하여 $\log a_3 = rac{q}{p}$ 이다. 이때, 서로소인 두 자연수 p, q의 합 p+q의 값을 구하여라.

▷ 정답: 7

▶ 답:

 $rac{a_{n+2}}{a_{n+1}} = \sqrt[3]{rac{a_{n+1}}{a_n}}$ 의 양변에 상용로그를 취하면 $\log a_{n+2} - \log a_{n+1} = \frac{1}{3} (\log a_{n+1} - \log a_n)$

이때, $\log a_{n+1} - \log a_n = b_n$ 이라 놓으면 $b_1 = \log a_2 - \log a_1 = \log 10 - \log 1 = 1$ 이고,

 $b_{n+1} = \frac{1}{3}b_n$ 이므로 $b_n = 1 \cdot \left(\frac{1}{3}\right)^{n-1}$

또한, 수열 $\{b_n\}$ 은 수열 $\{\log a_n\}$ 의 계차수열이므로

 $\log a_n = \log a_1 + \sum_{k=1}^{n-1} (\log a_{k+1} - \log a_k)$

 $= \log 1 + \sum_{k=1}^{n-1} \left(\frac{1}{3}\right)^{k-1} = \frac{1 - \left(\frac{1}{3}\right)^{n-1}}{1 - \frac{1}{3}} = \frac{3}{2} \left(1 - \frac{1}{3^{n-1}}\right)$

 $\therefore \log a_3 = \frac{3}{2} \left(1 - \frac{1}{3^2} \right) = \frac{3}{2} \cdot \frac{8}{9} = \frac{4}{3}$ $\therefore p+q=7$

 $29. 5^{100}, 11^{100}$ 은 각각 70자리, 105자리의 수이다. 이때 55^{10} 의 자릿수 는?

① 10 ② 12 ③ 14 **4** 16

 5^{100} 이 70자리의 수이므로 $\log 5^{100}$ 의 지표는 69이다. $69 \leq \log 5^{100} < 70, \ 69 \leq 100 \log 5 < 70$

 $0.69 \leq \log 5 < 0.7 \cdots \bigcirc$

해설

 11^{100} 이 105자리의 수이므로 $\log 11^{100}$ 의 지표는 104이다. $104 \leq \log 11^{100} < 105, \ 104 \leq 100 \log 11 < 105$

 $1.04 \leq \log 11 < 1.05 \cdots \bigcirc$ $\log 55^{10} = 10 \log 55 = 10 (\log 5 + \log 11)$

①+ⓒ을 하면

 $1.73 \le \log 5 + \log 11 < 1.75$ $17.3 \leq 10\log 55 < 17.5$

따라서 $\log 55^{10}$ 의 지표가 17이므로 55^{10} 은 18자리의 수이다.

 ${f 30.}$ $A=50^{-5}$ 일 때, A는 소수점 아래 n번째 자리에서 처음으로 0이 아닌 수 m이 나온다. 이때, $m \cdot n$ 의 값을 구하여라.

▶ 답:

▷ 정답: 27

해설

 $\log A = -5\log 50$ $= -5(\log 100 - \log 2)$ $= -5(2 - \log 2)$ =-5(2-0.3010) $= -10 + 5 \times 0.3010$ = -8.495지표는 -9 이므로 n = 9그런데 $\log A = -8.495 = -9 + 0.505$ -9 + 0.4771 < -9 + 0.505 < -9 + 0.6020 $10^{-9} \times 3 < A < 10^{-9} \times 4$ A의 첫자리수 = 3

 $\therefore m = 3$

 $\therefore m \cdot n = 3 \times 9 = 27$

- **31.** 양수 a의 소수 부분을 b라 할 때, $a^2 + b^2 = 8$ 을 만족하는 a의 값을 구하면?
 - ① $1 + \sqrt{3}$ ② $2 + \sqrt{3}$ ③ $2 \sqrt{3}$

- $4 1 \sqrt{3}$ $3 + 2\sqrt{3}$

(i) a가 정수일 때,

해설

- b = 0, $a^2 = 8$ $a = 2\sqrt{2}$ (모순)
- (ii) a > 0, 정수가 아닐 때 $b \neq 0$ a의 정수부분을 k라 하면
- a = k + b (0 < b < 1)이라 하면 $a^2 + b^2 = 8$ 에서 $b^2 = 8 - a^2$
 - $0 < 8 a^2 < 1, \ \sqrt{7} < a < \sqrt{8}$
- $\therefore k = 2 \qquad \therefore b = a 2$ $a^2 + (a-2)^2 = 2a^2 - 4a + 4 = 8$
- $a^2 2a 2 = 0, \ a = 1 \pm \sqrt{3}$
- $\therefore a = 1 + \sqrt{3}(\because a > 0)$

32. $\left(\frac{1}{27}\right)^{\frac{4}{n}}$ 과 $\left(\frac{1}{64}\right)^{\frac{3}{n}}$ 의 값이 모두 자연수가 되도록 하는 정수 n의 값의

- ① -12 ② -15 ③ -12 ④ -10 ⑤ -6

 $\left(\frac{1}{27}\right)^{\frac{4}{n}} = 3^{-\frac{12}{n}}, \ \left(\frac{1}{64}\right)^{\frac{3}{n}} = 2^{-\frac{18}{n}}$ 이므로 이 두 수가 모두 자연 수가 되려면 $-\frac{12}{n}$, $-\frac{18}{n}$ 이 자연수이어야 한다. $\therefore n = -1, -2, -3, -6$ 따라서 구하는 정수의 합은

(-1) + (-2) + (-3) + (-6) = -12

33. 실수 a에 대하여 [a]는 a보다 크지 않은 최대 정수를 나타낸다. 다음 조건을 동시에 만족하는 모든 실수 x의 값의 곱을 M이라 할 때, $\log_{10} M^4$ 의 값을 구하여라.

① $[\log_{10} x] = 1$ ② $\log_{10} x - \log_{10} \frac{1}{x^3} = [\log_{10} x] - \left[\log_{10} \frac{1}{x^3}\right]$

답:

➢ 정답: 22

조건 ①에서 $[\log_{10} x] = 1$ 이므로 $\log_{10} x$ 의 지표는 1이다. $\therefore 1 \le \log_{10} x < 2$ 조건 ②에서 $\log_{10} x - [\log_{10} x] = \log_{10} \frac{1}{x^3} - \left[\log_{10} \frac{1}{x^3}\right]$ 이므로 $\log_{10} x$ 와 $\log_{10} \frac{1}{x^3}$ 의 가수가 같다 즉, $\log_{10} x + 3\log_{10} x = (정수)$ $\therefore 4\log_{10} x = (정수)$ ①에서 $4 \le 4\log_{10} x < 8$ $4\log_{10} x = 1, \frac{5}{4}, \frac{6}{4}, \frac{7}{4}$ $\therefore x = 10, 10^{\frac{5}{4}}, 10^{\frac{6}{4}}, 10^{\frac{7}{4}}$ 따라서, x의 값을 모두 곱하면 $M = 10^{1+\frac{5}{4}+\frac{6}{4}+\frac{7}{4}} = 10^{\frac{11}{2}}$ $\therefore \log_{10} M^4 = 22$