- 1. 두 함수 $f(x) = x^2$, g(x) = x + 2에 대하여 $(f \circ g)(x)$ 를 구하면?
 - ① $(f \circ g)(x) = (x+2)^2$ ② $(f \circ g)(x) = x^2 + 2$
 - ③ $(f \circ g)(x) = (x-2)^2$ ④ $(f \circ g)(x) = x^2 2$

(5) $(f \circ g)(x) = -x^2 + 2$

2.
$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \frac{1}{4 \cdot 5} + \dots + \frac{1}{99 \cdot 100}$$
을 간단히 하면?

① $\frac{98}{99}$ ② $\frac{100}{99}$ ③ $\frac{99}{100}$ ④ $\frac{101}{100}$ ⑤ $\frac{100}{101}$

3.
$$x = \frac{1}{2 + \sqrt{3}}, y = \frac{1}{2 - \sqrt{3}}$$
일 때, $x^3 + y^3$ 의 값은?

 $8\sqrt{3}$ ② $24\sqrt{3}$ ③ $30\sqrt{3}$ ④ 48 ⑤ 52

- 4. 함수 $y = \sqrt{-4x + 12} 2$ 는 함수 $y = a\sqrt{-x}$ 의 그래프를 x 축의
 - 방향으로 b 만큼, y 축의 방향으로 c 만큼 평행이동한 것이다. a+b+c
- 의 값을 구하여라.

▶ 답:

5. 등차수열 11, a_1 , a_2 , a_3 , \cdots , a_{100} , 213에서 공차는? ① 1 ② 2 ③ 3 4

6. 수열 $\{a_n\}$ 의 첫째항부터 제 n 항까지의 합 S_n 이 $S_n = n^2 + 2n - 1$ 일 때, a_{10} 의 값을 구하여라.

🔰 답:

각 항이 양수인 등비수열 $\{a_n\}$ 에서 $a_1:a_3=4:9$ 이고, $a_2=4$ 일 때, *a*₅의 값은?

8.
$$\sum_{k=11}^{15} k^2 - \sum_{k=1}^{10} k^2$$
의 값을 구하여라.

> 답:

실수 전체의 집합에서 정의된 두 함수 f, g에 대하여 f(x)는 항등함 수이고, g(x) = -2일 때, f(4) + g(-1)의 값을 구하여라.

▶ 답:

10. $f: X \rightarrow Y$ 가 상수함수이고, f(100) = 100 일 때, f(2006) = a 이다. a + 100 의 값은? ③ 200 **4** 300 (5) 400 (2) 100

11. 집합 A = {1, 2, 3, 4, 5}, B = {-1, 0, 1} 에 대하여 함수 $f: A \to B$ 를 정의할 때, f(1)f(2)f(3)f(4)f(5) = 0 인 함수 f 의 개수를 구하여 라

>> 답: 개

12. 함수 $f(x) = \sqrt{7-3x}$ 의 역함수를 $f^{-1}(x)$ 라 할 때, $(f^{-1} \circ f^{-1})(1)$ 의 값은?

13. 함수
$$y = f(x)$$
 의 그래프가 다음의 그림과 같을 때, $f(x)$ 는? $y=f(x)$

①
$$f(x) = |x+1| + 1$$
 ②

(5) f(x) = -|x-1|+1

①
$$f(x) = |x+1| + 1$$
 ② $f(x) = |x+1| - 1$
③ $f(x) = |x-1| + 1$ ④ $f(x) = |x-1| - 1$

14.
$$a+b+c=1$$
일 때, $\frac{a^2-1}{b+c}+\frac{b^2-1}{c+a}+\frac{c^2-1}{a+b}$ 의 값을 구하시오.
답:

15. 실수 x를 입력하면 실수 $\frac{x-1}{6x-1}$ 이 출력되어 나오는 기계가 있다. 이 기계에 $\frac{2}{3}$ 를 입력하여 출력되어 나온 결과를 다시 입력하고 또 출력되어

출력되어 나오는 결과를 구하면? (단,
$$x \neq \frac{1}{6}$$
)

나온 결과를 다시 입력하는 과정을 1004번 반복했을 때, 마지막으로

① $-\frac{1}{9}$ ② $-\frac{1}{11}$ ③ $\frac{2}{3}$ ④ 9 ⑤ 11

16.
$$\sum_{k=1}^{15} \log_2 \left(1 + \frac{1}{k} \right)$$
 $\stackrel{\triangle}{=}$?

$$\bigcirc \log_2 3$$

$$\bigcirc \log_2 15$$

$$\Im \log_2 30$$

17. 모든 항이 양수이고, 임의의 자연수 m, n에 대하여 $a_{m+n} = 2a_m a_n$ 을 만족하는 수열 $\{a_n\}$ 이 있다. $a_4 = 72$ 일 때, a_5 의 값은? (1) $72\sqrt{3}$ ② $72\sqrt{6}$ ③ 144

(5) 216

 $4) 144 \sqrt{3}$

18. $R = \{x | 0 \le x \le 1\}$ 이라 할 때, R에서 R로의 함수 y = f(x) 의 그래프가 다음 그림과 같다.(단, $f^n(x) = (f \circ f \circ ... \circ f)(x) : f$ 개수 n 개)

이 때, $f\left(\frac{1}{4}\right) + f^2\left(\frac{1}{4}\right) + f^3\left(\frac{1}{4}\right) + \dots + f^{99}\left(\frac{1}{4}\right)$ 의 값을 구하면?

(단,
$$f\left(\frac{1}{4}\right) = \frac{1}{2}$$
, $f\left(\frac{1}{2}\right) = \frac{3}{4}$, $f\left(\frac{3}{4}\right) = \frac{1}{4}$)

19. 등식
$$(1+2+2^2+\cdots+2^{10})\left(1+\frac{1}{2}+\frac{1}{2^2}+\cdots+\frac{1}{2^{10}}\right)=(2^6-m)^2$$
을 만족하는 실수 m 의 값은?

①
$$\frac{1}{24}$$
 ② $\frac{1}{25}$ ③ $\frac{1}{26}$ ④ $\frac{3}{25}$ ⑤ $\frac{3}{26}$

20. 등비수열
$$\{a_n\}$$
에서 $a_1 + a_2 + a_3 + \cdots + a_n = 36$,

$$a_1 + a_2$$

- $a_{n+1} + a_{n+2} + a_{n+3} + \dots + a_{2n} = 18$ 일 때,

> 답:

- $a_{2n+1} + a_{2n+2} + a_{2n+3} + \cdots + a_{3n}$ 의 값을 구하여라.

21. 수직선 위의 점
$$P_{n+2}(a_{n+2})$$
는 점 $P_n(a_n)$ 과 점 $P_{n+1}(a_{n+1})$ 을 연결하는 선분 P_nP_{n+1} 을 $2:3$ 으로 내분하는 점이다. $P_1(0),\ P_2(5)$ 일 때, 점 P_n 의 좌표 a_n 은?

①
$$\frac{25}{8} \left\{ 1 - \left(-\frac{2}{5} \right)^{n-1} \right\}$$
 ② $\frac{25}{7} \left\{ 1 - \left(-\frac{2}{5} \right)^{n-1} \right\}$ ③ $\frac{25}{6} \left\{ 1 - \left(-\frac{2}{5} \right)^{n-1} \right\}$ ④ $\frac{25}{7} \left\{ 1 - \left(-\frac{3}{5} \right)^{n-1} \right\}$

①
$$\frac{25}{8} \left\{ 1 - \left(-\frac{2}{5} \right)^{n-1} \right\}$$
 ② $\frac{25}{7} \left\{ 1 - \left(-\frac{2}{5} \right)^{n-1} \right\}$ ③ $\frac{25}{6} \left\{ 1 - \left(-\frac{2}{5} \right)^{n-1} \right\}$ ④ $\frac{25}{7} \left\{ 1 - \left(-\frac{3}{5} \right)^{n-1} \right\}$

각각 2. 1인 직사각형 모양의 스티커가 있다. 이 두 종류의 스티커를 사용하여 왼쪽부터 차례로 붙이되. 가로의 길이가 1인 스티커 다음 에는 반드시 가로의 길이가 2인 스티커가 와야 한다고 할 때. 가로의

한 변의 길이가 1인 정사각형 모양의 스티커와 가로. 세로의 길이가

길이가 n. 세로의 길이가 1인 직사각형을 두 종류의 스티커를 이용하여 겹치지 않게 완전히 메우는 방법의 수를 a, 이라 하자. 이 때, 다음 중 옳은 것은? ② $a_{n+3} = a_{n+3} + a_n$

22.

 $a_{n+3} = a_{n+2} + a_{n+1} + a_n$

23.
$$x^2 + 6x + 4 = 0$$
의 두 근이 a, b 일 때, $\frac{\sqrt{b}}{\sqrt{a}} + \frac{\sqrt{a}}{\sqrt{b}}$ 의 값은?

-3 ② $-\frac{3}{2}$ ③ -1 ④ $\frac{3}{2}$ ⑤ 3

24. a, b가 양수일 때, $2 \le x \le 3$ 을 만족하는 임의의 실수 x에 대하여 $ax + 2 \le \frac{2x - 1}{x - 1} \le bx + 2$ 가 성립할 때, a의 최댓값과 b의 최솟값의

① $\frac{2}{3}$ ② 1 ③ $\frac{4}{3}$ ④ $\frac{5}{3}$ ⑤ 2

합을 구하면?

25. 1이 아닌 서로 다른 두 수 a, b에 대하여 다음과 같이 양수로 이루어진 수열이 있다.

a, b, a², ab, b², a³, a²b, ab², b³,··· 이 수역의 첫째핫 a부터 a™b™까지의 항읔 S(m n)이라 학 때 보기

이 수열의 첫째항 a부터 a^mb^n 까지의 합을 S(m, n)이라 할 때, 보기 중 옳은 것만을 고른 것은?

보기

$$\bigcirc$$
 $a^{10}b^7$ 은 이 수열의 제160항이다.

 \bigcirc 첫째항부터 제100항까지 모든 항의 곱은 $a^{554}b^{510}$ 이다.

$$\bigcirc$$
 $S(n, n+4) - S(n+4, n) = a^n b^n \times \frac{a^4 - b^4}{a - b}$