
1. 동전 1개와 주사위 1개를 동시에 던질 때, 동전은 뒷면이 나오고 주사위는 소수의 눈이 나올 확률을 구하여라.

답:

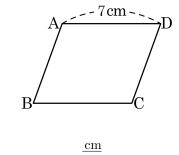
ightharpoonup 정답: $\frac{1}{4}$

 $\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$

2. 다음 그림에서 $\angle x$ 의 크기를 구하여라.

➢ 정답: 65 º

 $\angle x = (180^{\circ} - 50^{\circ}) \div 2 = 65^{\circ}$

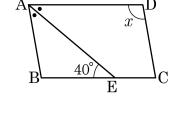

▶ 답:

25° A B # D 50° H C

- 3. 다음 중 평행사변형에 대한 설명으로 옳은 것은?
 - 네 변의 길이가 같다.
 두 대각선은 서로 수직한다.
 - ③ 두 대각선은 길이가 같다.
 - ④ 이웃하는 두 각의 크기가 같다.
 - ⑤ 두 쌍의 대변이 각각 평행하다.

평행사변형은 두 쌍의 대변이 각각 평행한 사각형이다.

4. 다음 평행사변형의 둘레의 길이가 $26\mathrm{cm}$ 이다. $\overline{\mathrm{AD}}=7\mathrm{cm}$ 일 때, $\overline{\mathrm{AB}}$ 의 길이를 구하여라.


▷ 정답: 6cm

V OH: UCIII

▶ 답:

 $\overline{AB} = 26 \div 2 - 7 = 6 \text{(cm)}$

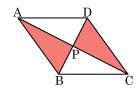
5. 다음 그림과 같은 $\square ABCD$ 에서 $\angle A$ 의 이등분선이 변 BC와 만나는 점을 E라 한다. 이때, $\square ABCD$ 가 평행사변형이 되도록 하는 $\angle x$ 의 크기를 구하여라.

▷ 정답: 100°

▶ 답:

 $\overline{\mathrm{AD}} \slash \overline{\mathrm{BC}}$ 이므로 $\bullet = 40\,^{\circ}$ 이다. $\therefore \ \angle x = \angle \mathrm{B} = 180\,^{\circ} - 80\,^{\circ} = 100\,^{\circ}$

- 6. 다음 중 평행사변형이 되는 조건이 <u>아닌</u> 것을 골라라.
 - 두 대각선이 서로 다른 것을 이등분한다.
 - ◎ 두 쌍의 대각의 크기가 각각 같다.
 - © 한 쌍의 대변이 평행하고, 한 쌍의 대변의 길이가 같다.② 두 쌍의 대변이 각각 평행하다.
 - 두 쌍의 대변의 길이가 각각 같다.


▷ 정답: ⓒ

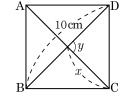
▶ 답:

© 평행사변형이 되려면 한 쌍의 대변이 평행이고 그 길이가

같아야 한다

7. 다음 그림에서 평행사변형 ABCD 의 넓이 가 $70 {
m cm}^2$ 일 때, $\Delta {
m ABP} + \Delta {
m DPC}$ 의 넓이를 구하여라.

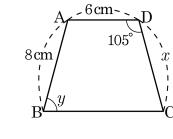
▷ 정답: 35<u>cm²</u>


답:

 $\triangle ABP + \triangle DPC = \Box ABCD \times \frac{1}{2}$ = $70 \times \frac{1}{2} = 35 \text{ (cm}^2\text{)}$

 $\underline{\mathrm{cm}^2}$

- 다음 그림의 정사각형 ABCD에서 x, y를 차례 8. 로 나열한 것은?



- ① 5cm, 45° ② 10cm, 45° 4 10cm, 90° 5 15cm, 90°
- ③5cm, 90°

$$\overline{BD} = \overline{AC} = 10(\text{cm}), x = \frac{\overline{AC}}{2} = 5(\text{cm})$$

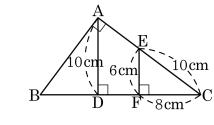
$$\Delta y = 180^{\circ} - 45^{\circ} - 45^{\circ} = 90^{\circ}$$

9. 다음 그림에서 □ABCD 가 등변사다리꼴일 때, x, y 의 값을 각각 구하여라.

 $\underline{\mathrm{cm}}$

 ■ G:

 ■ G:


> 정답: *x* = 8<u>cm</u>

▷ 정답: ∠y = 75<u>°</u>

 $x = \overline{AB} = 8 \text{ cm}$ $\angle B = 180^{\circ} - 105^{\circ} = 75^{\circ}$ $\angle v = 75^{\circ}$

∴ ∠y = 75°

10. 다음 그림과 같은 직각삼각형 ABC 에서 \overline{AB} 를 구하면?

- ① 6 cm ② 8 cm ④ $\frac{27}{2} \text{ cm}$ ⑤ 12 cm

∠ABD = ∠CEF 이므로

 $\triangle BDA \hookrightarrow \triangle EFC \text{ (AA 닮음)}$ $\overline{AB} : \overline{EC} = \overline{AD} : \overline{CF},$

 $\overline{AB}:10=10:8,\ \overline{AB}=\frac{25}{2}\ (\,\mathrm{cm})$

- **11.** 0에서 5까지의 숫자가 적힌 6장의 카드에서 3장을 뽑아 세 자리의 정수를 만들 때, 그 수가 200 이상일 확률은?
 - ① $\frac{1}{3}$ ② $\frac{1}{2}$ ③ $\frac{2}{5}$ ④ $\frac{3}{5}$

모든 경우의 수 : $5 \times 5 \times 4 = 100$ (가지) 200 이상일 경우의 수 : $4 \times 5 \times 4 = 80$ (가지)

 $\therefore \ (확률) = \frac{80}{100} = \frac{4}{5}$

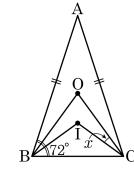
- 12. 과자 회사에서 경품 행사를 하였다. 과자 봉지 안에 스티커 50000개의 당첨 표시를 하고 경품으로 드럼세탁기 5대, 스마트폰 50대, 게임기 $100\,\mathrm{TH},\ \mathrm{LT}\ 500\,\mathrm{TH}$ 를 준비하였다. 과자 한 봉지를 샀을 때, 경품에 당첨될 확률은?
 - 1 $\begin{array}{c}
 (1) \\
 \hline
 50000 \\
 4) \\
 \hline
 137 \\
 10000
 \end{array}$

해설

131

 $\frac{5}{50000} + \frac{50}{50000} + \frac{100}{50000} + \frac{500}{50000} = \frac{655}{50000} = \frac{131}{10000}$

- 13. 지혜가 친구와의 약속 시간에 늦을 확률이 $\frac{1}{3}$ 일 때, 3번의 약속 중 한 번만 늦을 확률은?
 - ① $\frac{1}{9}$ ② $\frac{2}{9}$ ③ $\frac{1}{3}$ ④ $\frac{4}{9}$ ⑤ $\frac{5}{9}$


해설 세 번의 약속 중 한 번만 늦을 확률은 $\frac{1}{3} \times \frac{2}{3} \times \frac{2}{3} \times 3 = \frac{4}{9}$

- **14.** 두 사람 A, B가 1회에는 A, 2회에는 B, 3회에는 A, 4회에는 B 의 순으로 주사위를 던지는 놀이를 한다. 먼저 홀수의 눈이 나오면 이긴다고 할 때, 4회이내에 B가 이길 확률은?
 - ① $\frac{1}{20}$ ② $\frac{3}{16}$ ③ $\frac{1}{4}$ ④ $\frac{5}{16}$ ⑤ $\frac{9}{100}$
 - 4회 이내에 B가 이길 확률은
 - i) 2 회때 이길 경우
 - ii) 4회때 이길 경우
 - 모두 두 가지의 경우가 있다. 홀수의 눈이 나올 경우는 1, 3, 5이므로 홀수 눈이 나올 확률은
 - $\frac{1}{2}$ 이다. i) 2회 때 이길 확률은 $\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$

해설

- ii) 4회 때 이길 확률은 $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{16}$ $\therefore \frac{1}{4} + \frac{1}{16} = \frac{5}{16}$

15. 다음 그림에서 점 O 와 I 는 각각 $\overline{AB}=\overline{AC}$ 인 이등변삼각형 ABC 의 외심과 내심이다. $\angle ABC=72^\circ$ 일 때, $\angle x$ 의 크기=() $^\circ$ 이다. 빈 칸에 들어갈 수를 구하여라.

▷ 정답: 18

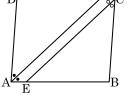
▶ 답:

 $\angle \mathrm{BAC} = 180\,^{\circ} - 2 \times 72\,^{\circ} = 36\,^{\circ}$ 이므로 $\angle \mathrm{BOC} = 2\angle \mathrm{BAC} = 72\,^{\circ}$

 $\angle BIC = 90^{\circ} + \frac{1}{2} \times \angle BAC = 108^{\circ}$

따라서
$$\angle OCB = \frac{1}{2}(180\degree - 72\degree) = 54\degree$$

$$\angle ICB = \frac{1}{2}(180\degree - 108\degree) = 36\degree$$
이므로
 $\angle x = 54\degree - 36\degree = 18\degree$


$$\angle x = 54^{\circ} - 36^{\circ} = 18^{\circ}$$

- **16.** 다음 조건 중에서 사각형 ABCD 는 평행 사변형이 될 수 $\underline{\text{없는}}$ 것은?
 - $\overline{\text{(1)}}\overline{\text{AD}}//\overline{\text{BC}}, \overline{\text{AB}} = \overline{\text{DC}}$
 - ② $\angle A = \angle C, \angle B = \angle D$ ③ $\angle B + \angle C = 180^{\circ}, \angle A + \angle B = 180^{\circ}$
 - ④ $\overline{AO} = \overline{CO}, \overline{BO} = \overline{DO}$ (점 O는 대각선의 교점이다.
 - \bigcirc $\overline{\mathrm{AD}}//\overline{\mathrm{BC}}, \overline{\mathrm{AB}}//\overline{\mathrm{DC}}$

① 반례는 등변사다리꼴이 있다.

17. 다음 그림과 같이 평행사변형 ABCD 에서 $\angle A$, $\angle C$ 의 이등분선이 변 CD, BA 와 만나는 점을 각각 E, F 라 할 때, $\overline{\mathrm{AF}}=8\mathrm{cm},\ \overline{\mathrm{DF}}=$ $6 \mathrm{cm}, \ \overline{\mathrm{AB}} = 7 \mathrm{cm}$ 이다. 사각형 AECF 의 둘레의 길이를 구하여라.

 $\underline{\mathrm{cm}}$

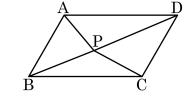
▷ 정답: 18 cm

▶ 답:

해설

 $\angle BAD = \angle BCD$ 이므로 $\frac{\angle BAD}{2} = \frac{\angle BCD}{2}$ ∠ECF = ∠CEB (∵ 엇각)

□ABCD 가 평행사변형이므로

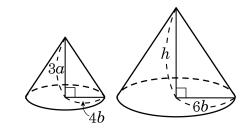

∠AFD = ∠FAE (∵ 엇각) $\therefore \angle \mathsf{AEC} = \angle \mathsf{AFC}$

두 쌍의 대각의 크기가 각각 같으므로 □AFCE 는 평행사변형

평행사변형의 두 대변의 길이는 같으므로

 $2 \times (8+1) = 18$ (cm) 이다.

18. 다음 그림과 같은 평행사변형 ABCD에 대하여 \triangle ABP = $18 cm^2$, \triangle PBC = $16 cm^2$, \triangle PCD = $20 cm^2$ 일 때, \triangle APD의 넓이는?

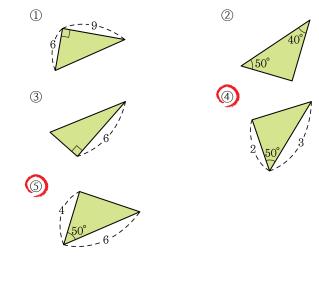


 $4 30 \text{cm}^2$ $22cm^2$ \bigcirc 35cm²

 $3 25 \text{cm}^2$

내부의 한 점 P에 대하여 $\frac{1}{2}$ \square ABCD = \triangle ABP + \triangle PCD = $\triangle APD + \triangle PBC$ 이다. $\triangle ABP = 18cm^2$, $\triangle PBC = 16cm^2$, $\triangle PCD = 20cm^2$ 이므로 $18 + 20 = \triangle APD + 16$ 이다. ∴ $\triangle PAD = 22cm^2$

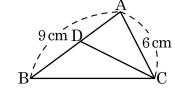
19. 다음 그림의 두 원뿔은 서로 닮은 도형이다. 큰 원뿔의 높이를 구하면?


- ① $\frac{7}{3}a$ ② 7a ③ $\frac{9}{2}a$ ④ 9a ⑤ 12a

작은 원뿔과 큰 원뿔의 닮음비가 4b:6b=2:3이므로 2:3=

3a:h따라서 $h = \frac{9}{2}a$ 이다.

20. 다음 삼각형 중에서 주어진 삼각형과 닮은 삼각형을 모두 찾으면?


3 500

④ 합동

⑤ SAS 닮음

 ${f 21.}$ 다음 그림에서 $\angle ACD = \angle ABC$, $\overline{AB} = 9 {
m cm}$, $\overline{AC} = 6 {
m cm}$ 일 때, \overline{AD} 의 길이는?

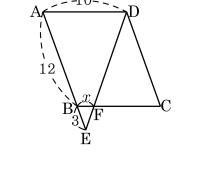

44cm

① 2.5cm

- ② 3cm ⑤ 5cm
- ③ 3.2cm

 $\angle A$ 는 공통, $\angle ACD = \angle ABC$ 이므로 $\triangle ABC$ $\bigcirc \triangle ACD$ (AA 닮

음)이다 $\overline{AB}:\overline{AC}=\overline{AC}:\overline{AD}$ $9:6=6:\overline{\mathrm{AD}}$, $9\overline{\mathrm{AD}}=36$ 이므로 $\overline{\mathrm{AD}}=4(\mathrm{cm})$ 이다.


① $\frac{1}{2}$ ② $\frac{3}{2}$ ③ $\frac{5}{2}$

⑤ 4

 $\triangle ABC$ 와 $\triangle AED$ 에서 $\angle A$ 는 공통,

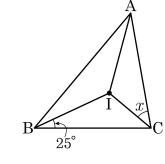
∠ACB = ∠ADE = 90°이므로 △ABC∽△AED (AA 닮음) $\overline{AC} : \overline{AD} = \overline{BC} : \overline{ED}$ (5+x): 4 = 6: 3 $3\left(5+x\right)=24$ $5 + x = 8 \qquad \therefore x = 3$

 ${f 23}$. 다음 그림에서 사각형 ABCD 가 평행사변형일 때, $\overline{
m BF}$ 의 길이는?

① 1

②2 33 44 55

 $\square ABCD$ 가 평행사변형이므로 \overline{BE} // \overline{CD} 이다.

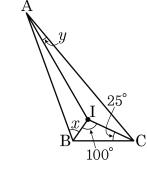

해설

 $\overline{\mathrm{BE}}:\ \overline{\mathrm{CD}}=\overline{\mathrm{BF}}:\ \overline{\mathrm{CF}}$ 이므로 3 : 12 = x : (10 - x)

12x = 30 - 3x

 $\therefore x = 2$

24. 다음 그림에서 $\triangle ABC$ 는 $\overline{AC}=\overline{BC}$ 인 이등변삼각형, 점 I는 $\triangle ABC$ 의 내심이고. $\angle IBC=25\,^{\circ}$ 일 때, $\angle x$ 의 값을 구하여라.


➢ 정답: 40°

▶ 답:

 $\triangle ABC$ 는 $\overline{AC}=\overline{BC}$ 인 이등변삼각형이므로 $\angle A=\angle B$ 이고,

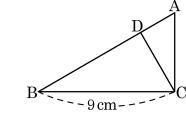
점 I 는 △ABC의 내심이므로 각의 이등분선의 교점이다. ∴ ∠x = (180° - 25°×4) ÷ 2 = 40°

25. 다음 그림에서 점 I가 \triangle ABC의 내심일 때, $\angle x + \angle y = ($) °의 값을 구하여라.

▷ 정답: 65

▶ 답:

$\angle { m BIC} = 100\,^{\circ},\ \angle { m BCI} = 25\,^{\circ}$ 이므로 삼각형 내각의 합은 $180\,^{\circ}$


임을 이용하면 $\angle IBC = 180\degree - 100\degree - 25\degree = 55\degree$ 이다. 점 I가 삼각형의 세 내각의 이등분선의 교점이므로 $\angle x^\circ =$

 $\angle IBC = 55$ °이다.

또, $\angle {\rm BIC} = 100\,^{\circ}$, 점 I 가 $\triangle {\rm ABC}$ 의 내심일 때, $\angle {\rm BIC} = 90\,^{\circ} +$

고, $\angle BC = 100^{\circ}$, $\Box A = 100^{\circ}$,

26. 다음 그림의 $\triangle ABC$ 에서 $\overline{AB}=2\overline{AC}$ 이고 $\overline{BD}=3\overline{DA}$ 이다. $\overline{BC}=$ $9 \mathrm{cm}$ 일 때 , $\overline{\mathrm{CD}}$ 의 길이를 구하면?

- ① 4cm ② $\frac{9}{2}$ cm ④ $\frac{11}{2}$ cm ⑤ 7cm
- ③ 5cm

 $\overline{\mathrm{AD}} = a$ 라 하면, $\overline{\mathrm{BD}} = 3a$, $\overline{\mathrm{AC}} = 2a$ 이므로 $\overline{\mathrm{AD}} : \overline{\mathrm{AC}} = \overline{\mathrm{AC}} : \overline{\mathrm{AB}} = 1 : 2$, $\angle \mathrm{A}$ 는 공통 $\therefore \triangle \mathrm{ACD} \bigcirc \triangle \mathrm{ABC}$ 이고 닮음비는 1 : 2따라서 $\overline{\mathrm{CD}}:9=1:2,$ $\overline{\mathrm{CD}}=\frac{9}{2}(\,\mathrm{cm})$ 이다.