
1. 다음 평행사변형의 둘레의 길이가 96 일 때, $\overline{\mathrm{AD}}$ 의 길이를 구하여라.

해설

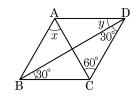
$$(4a - 3 + 3a + 2) \times 2 = 96$$

$$7a - 1 = 48, \ 7a = 49$$

 $a = 7$

$$\overline{AD} = 4a - 3 = 4 \times 7 - 3 = 25$$

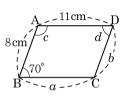
 축척이 1 : 25000 인 지도에서 1.2cm 인 두 지점은 실제로 몇 m 로 나타나는지 구하여라.


답:	n
	_

▷ 정답: 300m

```
1:25000 = 1.2:x

\therefore x = 30000 \text{cm} = 300 \text{m}
```


3. 다음 그림의 사각형 ABCD 가 평행사변형일 때, $\angle x + \angle y$ 의 값을 구하여라.

$$\overline{AB} /\!\!/ \overline{CD}$$
 이므로 $x = 60^\circ$, $y = 30^\circ$ 이다.
 $\angle x + \angle y = 60^\circ + 30^\circ = 90^\circ$ 이다.

대로 구하여라.

답:

 $\underline{\mathrm{cm}}$

다음 평행사변형에서 a, b, c, d 의 값을 차례

- 답: <u>cm</u>
- □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

 □
 □

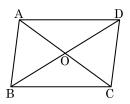
 □
 □

 □
 □

 □
 □

 □
 □

 □
 □


 □
 □

 □
 □
- ➢ 정답: a = 11 cm
- ▷ 정답: b = 8cm
- ▷ 정답: ∠c = 110°
- ▷ 정답: ∠d = 70°

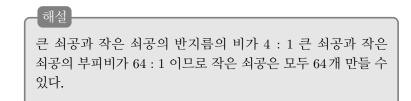
해설

평행사변형은 두 쌍의 대변의 길이가 각각 같고, 두 쌍의 대각의 크기가 각각 같다.

다음 그림에서 평행사변형 ABCD의 넓이가 40cm² 일 때, ΔBOC의 넓이는 xcm² 이다. x 의 값을 구하여라.

 $\triangle BOC = \frac{1}{4} \times \square ABCD = 10(cm^2)$ 이다.

6. △ABC 와 △DEF 가 다음 조건을 만족할 때, △ABC ♡ △DEF 가 되지 <u>않는</u> 경우는?


①
$$\frac{\overline{AB}}{\overline{DE}} = \frac{\overline{BC}}{\overline{EF}} = \frac{\overline{CA}}{\overline{FD}}$$

③ $\angle A = \angle D, \angle C = \angle F$

$$\begin{array}{l}
\boxed{2} \quad \frac{\overline{BC}}{\overline{EF}} = \frac{\overline{CA}}{\overline{FD}}, \ \angle C = \angle F \\
\boxed{4} \quad \frac{AB}{\overline{DE}} = \frac{BC}{\overline{EF}}, \ \angle C = \angle F
\end{array}$$

해설
$$\overline{AB}$$
 와 \overline{BC} 의 끼인각의 $\angle B$ 이고, \overline{DE} 와 \overline{EF} 의 끼인각은 $\angle E$ 이므로, $\angle B = \angle E$ 일 때, SAS 닮음 조건에 의해 $\triangle ABC \bigcirc \triangle DEF$ 이다.

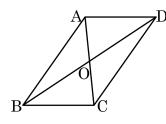
7. 반지름의 길이가 8cm 인 쇠공을 녹여 반지름의 길이가 2cm 인 쇠공을 만들 때, 모두 몇 개의 작은 쇠공을 만들 수 있는지 구하여라.

답:		
> 정답 :	64	가

8. 반지름의 길이가 1m인 쇠공을 녹여서 반지름의 길이가 10cm인 쇠공을 만들 때, 몇 개나 만들 수 있는가?

③ 300개

② 100개


1000개

① 30개

④ 500 개

해설

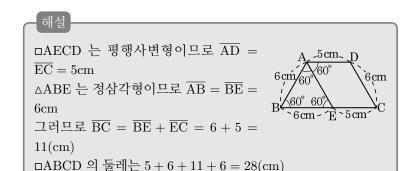
9. 다음 평행사변형 ABCD에서 \triangle AOD의 둘레가 22 이고, $\overline{AC}=10,\ \overline{BD}=18$ 일 때, \overline{BC} 의 길이는 ?

① 5 ② 6 ③ 7 ④ 8 ⑤ 9

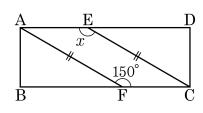
△AOD의 둘레는
$$\overline{AO} + \overline{DO} + \overline{AD} = 5 + 9 + \overline{AD} = 22$$
, $\overline{AD} = 8$ 이다.
∴ $\overline{BC} = 8$

- **10.** 다음 중 평행사변형이 되는 조건이 <u>아닌</u> 것은?
 - ① 두 쌍의 대변의 길이가 각각 같다.
 - ② 두 대각선이 서로 다른 것을 이등분한다.
 - ③ 두 대각선의 길이가 같다.
 - ④ 한 쌍의 대변이 평행하고 그 길이가 같다.
 - ⑤ 두 쌍의 대각의 크기가 각각 같다.

해설

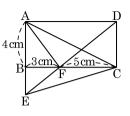

평행사변형이 되는 조건 다음의 각 경우의 어느 한 조건을 만족하면 평행사변형이 된다.

- (1) 두 쌍의 대변이 각각 평행하다.(정의)
- (2)두 쌍의 대변의 길이가 각각 같다.
- (3) 두 쌍의 대각의 크기가 각각 같다.
- (4) 두 대각선이 서로 다른 것을 이등분한다.
- (5) 한 쌍의 대변이 평행하고 그 길이가 같다.


11. 다음 그림과 같이 ĀD // BC 인 등변사다리꼴 ABCD 에서 CD = 6cm, ĀD = 5cm, ∠A = 120° 일 때, □ABCD 의 둘레의 길이를 구하 여라.

답: <u>cm</u>

▷ 정답: 28 <u>cm</u>

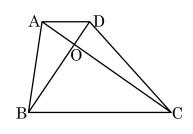


12. 다음 그림과 같은 직사각형 ABCD의 변 AD, BC 위에 $\overline{\rm AF}=\overline{\rm EC}$, $\angle {\rm AFC}=150^\circ$ 일 때, $\angle x$ 의 크기를 구하여라.

 \Box AFGE는 평행사변형이고, 두 대각의 크기는 같으므로 x=150°이다.

13. 다음 그림과 같은 직사각형 ABCD 에서 AB의 연장선 위의 점 E 를 잡아 BC와 ED의 교점을 F 라 할 때, ΔFEC의 넓이를 구하여라.

▶ 답:


 $\underline{\mathrm{cm}^2}$

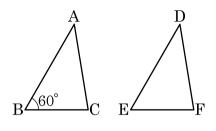
➢ 정답: 6 cm²

 $\overline{\mathrm{BD}}$ 를 그으면 $\Delta \mathrm{BFD} = \Delta \mathrm{FEC}$ 이므로

 $\triangle FEC = \frac{1}{2} \times 3 \times 4 = 6 \text{ (cm}^2)$

14. 다음 그림과 같이 $\overline{AD}//\overline{BC}$ 인 사다리꼴 ABCD 에서 \overline{AO} : $\overline{CO}=1:3$ 이고 $\triangle AOB=6 \text{cm}^2$ 일 때, $\triangle OBC$ 의 넓이를 구하여라.

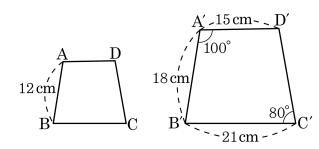
<u>cm²</u>


▷ 정답: 18<u>cm²</u>

해설

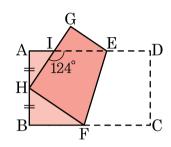
ΔABO , ΔOBC 는 높이가 같고 밑변이 다르다.

 $\triangle ABO: \triangle OBC = 1: 3 = 6cm^2: \triangle OBC \mathrel{\dot{.}.} \> \triangle OBC = 18cm^2$


15. 다음 그림에서 $\triangle ABC \bigcirc \triangle DEF$ 일 때, $\angle D + \angle F$ 의 크기는?

①
$$60^{\circ}$$
 ② 90° ③ 100° ④ 110° ⑤ 120°

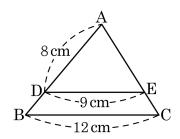
두 삼각형이 닮음이므로 대응각인
$$\angle B = \angle E$$
이다.
삼각형의 세 내각의 합은 180° 이므로 $\angle D + \angle E + \angle F = 180^\circ$
 $\therefore \angle D + \angle F = 180^\circ - 60^\circ = 120^\circ$


16. 다음 그림에서 □ABCD ♡ □A'B'C'D'이다. □ABCD의 둘레의 길이로 □A'B'C'D'의 둘레의 길이를 나눈 값은?

① 1.4 ② 1.5 ③ 1.6 ④ 3.5 ⑤ 4

 $\overline{AB}: \overline{A'B'}=12:18=2:3$ 이므로 둘레의 길이의 비도 2:3이다. 따라서 $\Box A'B'C'D'$ 의 둘레의 길이로 $\Box ABCD$ 의 둘레의 길이로 나눈 값은 $\frac{3}{2}=1.5$ 이다.

17. 다음 그림은 직사각형 ABCD 의 꼭짓점 C 가 변 AB 의 중점 H 에 오도록 $\overline{\text{EF}}$ 를 접는 선으로 하여 접은 것이다. $\angle \text{HIE} = 124^\circ$ 일 때, $\angle \text{HFE}$ 의 크기는?



①
$$34^{\circ}$$
 ② 48° ③ 56° ④ 62° ⑤ 73°

해설

∠HIE = 124° 이므로 ∠AIH = 56° 이다.
∠A = 90°, ∠AIH = 56° 이므로 ∠AHI = 34° 이다.
∠GHF = ∠C = 90° 이므로 ∠BHF = 56° 이고 ∠BFH = 34° 이다. 따라서
$$x = ∠HFE = ∠EFC = \frac{(180° - 34°)}{2} = 73°$$

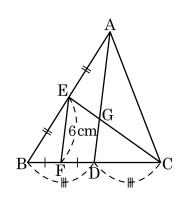
18. 다음 그림과 같이 $\triangle ABC$ 에서 \overline{DE} // \overline{BC} 일 때, \overline{BD} 의 길이는?

①
$$\frac{10}{3}$$
cm

② 4cm

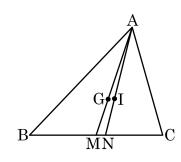
$$3\frac{8}{3}$$
cm

해설


$$\overline{DE} : \overline{BC} = \overline{AD} : \overline{AB}$$
이므로 $9 : 12 = 8 : (8 + \overline{DB})$
 $\therefore \overline{DB} = \frac{8}{3}$ (cm)

19. 다음 그림이 사각형 ABCD에서 두 변 AB, CD의 중점을 각각 M, N 두 대각선 AC, BD의 중점을 P, Q라 할 때, 사각형MQNP의 둘레의 길이는? (단, AD = 8 cm, BC = 14 cm)

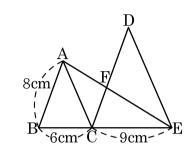
$$\overline{\mathrm{MP}} = \overline{\mathrm{NQ}} = \frac{1}{2}\overline{\mathrm{BC}} = 7(\,\mathrm{cm})$$
 $\overline{\mathrm{MQ}} = \overline{\mathrm{NP}} = \frac{1}{2}\overline{\mathrm{AD}} = 4(\,\mathrm{cm})$
따라서 $\Box\mathrm{MQNP}$ 의 둘레의 길이는 $2\times(7+4) = 22(\,\mathrm{cm})$ 이다.


20. 다음 그림에서 \overline{BC} , \overline{AB} , \overline{BD} 의 중점을 각각 D, E, F 라 하고, \overline{AD} 와 \overline{CE} 의 교점을 G라고 한다. $\overline{EF} = 6 \mathrm{cm}$ 일 때, \overline{AG} 의 길이는?

① 5cm ② 6cm ③ 7cm ④ 8cm ⑤ 9cm

$$\triangle ABD$$
에서 $\overline{AE} = \overline{BE}$, $\overline{BF} = \overline{FD}$ 이므로 $\overline{AD} = 2\overline{EF} = 12$ (cm)
점 G는 $\triangle ABC$ 의 무게중심이므로 $\overline{AG} : \overline{GD} = 2 : 1$
 $\therefore \overline{AG} = \frac{2}{3} \overline{AD} = \frac{2}{3} \times 12 = 8$ (cm)

21. 다음 그림에서 점 G,I는 각각 $\triangle ABC$ 의 무게중심과 내심이다. $\overline{AG},\overline{AI}$ 의 연장선이 \overline{BC} 와 만나는 점을 M,N 이라 하면 \overline{GI} $//\overline{MN}$ 이다. $\overline{GI}:\overline{BC}=1:7$ 일 때, $\overline{AB}:\overline{AC}$ 를 바르게 구한 것은?



 ΔAMN 에서 $\overline{GI}:\overline{MN}=2:3$ 이므로

 $\overline{BM}: \overline{MN}: \overline{NC} = 7:3:4$

 $\overline{AB} : \overline{AC} = \overline{BN} : \overline{NC} = 10 : 4 = 5 : 2$

22. 다음 그림에서 $\triangle ABC \bigcirc \triangle DCE$ 이고, 점 C는 \overline{BE} 위에 있다. $\overline{AB} = 8cm$, $\overline{BC} = 6cm$, $\overline{CE} = 9cm$ 일 때, \overline{DF} 의 길이는?

① 6cm

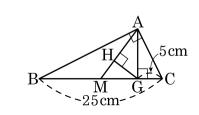
해설

② 6.8cm

3)7.2cm

④ 8cm ⑤ 8.2cm

$$\triangle ABC \bigcirc \triangle DCE$$
이므로 $\overline{AB} : \overline{DC} = \overline{BC} : \overline{CE}$


 $8:\overline{DC}=6:9$ 이므로 $\overline{DC}=12(cm)$ $\triangle EAB$ 와 $\triangle EFC$ 에서 $\angle E$ 는 공통, $\angle B$ = $\angle FCE(::$

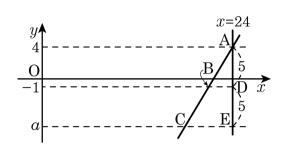
 $\triangle ABC \hookrightarrow \triangle DCE$)

 $\triangle EAB \bigcirc \triangle EFC \text{ (AA 닮음)}$ $\overline{EB} : \overline{EC} = \overline{AB} : \overline{FC} \cap \Box = 15 : 9 = 8 : \overline{CF}$ $\overline{CF} = 4.8 \text{ (cm)}$

 $\therefore \overline{DF} = 12 - 4.8 = 7.2 (\text{cm})$

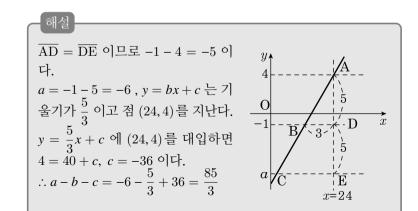
23. 다음 그림의 $\triangle ABC$ 에서 점 M은 \overline{BC} 의 중점이다. $\overline{AG} \bot \overline{BC}$, $\overline{GH} \bot \overline{AM}$, $\overline{BC} = 25 \text{cm}$, $\overline{GC} = 5 \text{cm}$ 일 때, \overline{AH} 의 길이를 구하면?

⑤ 16


$$\triangle ABC$$
에서 $\overline{AG}^2 = \overline{CG} \times \overline{BG}$ 이므로 $\overline{AG}^2 = 20 \times 5$
 $\therefore \overline{AG} = 10$

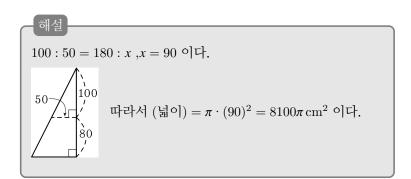
 $\triangle AMG$ 에서 $\overline{AG}^2 = \overline{AH} \times \overline{AM}$ 이고 $\overline{AM} = \frac{25}{2} = 12.5$ 이므로

$$10^2 = \overline{AH} \times 12.5$$


 $\therefore \overline{AH} = 8$

24. 세 직선 y = 4, y = -1, y = a(a < 0) 와 직선 y = bx + c (b > 0) 의 교점을 각각 A, B, C 라 하고, 점 A 를 지나는 직선 x = 24 와 y = -1, y = a 의 교점을 각각 D, E 라 할 때, $\overline{AD} = 5$, $\overline{DE} = 5$, $\overline{BD} = 3$ 이다. 이때, a - b - c 의 값을 구하여라.

답


$$ightharpoonup$$
 정답: $\frac{85}{3}$

25. 원탁 위에 전등이 다음 그림과 같이 아래로 비출 때, 바닥에 생기는 그림자의 넓이는 얼마인가?

50cm-1m-80cm

- ① $7700\pi \,\mathrm{cm}^2$ ② $7800\pi \,\mathrm{cm}^2$
- $3 7900\pi \,\mathrm{cm}^2$ $4 8000\pi \,\mathrm{cm}^2$
- $58100\pi\,{\rm cm}^2$

