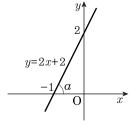

다음 그림에서 x+y 의 값을 구하여라. 1.

▶ 답:

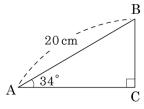
▷ 정답: 15


$$\sin 45^{\circ} = \frac{x}{5\sqrt{2}} = \frac{\sqrt{2}}{2}, \ x = 5$$

$$\sin 30^{\circ} = \frac{x}{y} = \frac{5}{y} = \frac{1}{2}, \ y = 10$$

$$\therefore \ x + y = 5 + 10 = 15$$

$$\therefore x + y = 5 + 10 = 15$$


다음 그림과 같이 직선 y = 2x + 2 와 x 축의 **2**. 양의 방향이 이루는 각의 크기를 a 라 할 때, $\tan a$ 값을 구하여라.

▶ 답: ▷ 정답: 2

 $an heta = rac{(높이)}{(밑변)} = rac{(y의 변화량)}{(x의 변화량)} = |(일차함수의 기울기)| = 2$ 따라서 $\tan a = 2$ 이다.

3. 다음 직각삼각형 ABC 에서 ∠A = 34° 일 때, 높이 BC 를 구하여라. (단, sin 34° = 0.5592, cos 34° = 0.8290)

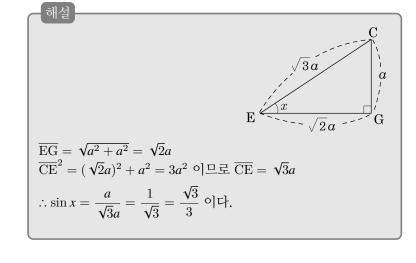
 ► 답:
 cm

 ► 정답:
 11.184 cm

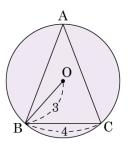
 $\sin 34^{\circ} = \frac{\overline{BC}}{20}$ $\therefore \overline{BC} = 20 \times 0.5592 = 11.184 \text{ (cm)}$

4. 다음 그림의 삼각형의 넓이를 구하여라. (단, 단위는 생략한다.)

▶ 답:


▷ 정답: 6 cm²

 $\underline{\mathrm{cm}^2}$

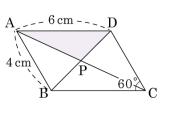

해설

 $\Delta ABC = \frac{1}{2} \times \overline{AC} \times \overline{BC} \times \sin(180^{\circ} - 135^{\circ})$ $= \frac{1}{2} \times 3 \times 4\sqrt{2} \times \frac{\sqrt{2}}{2} = 6$

- 5. 다음 그림은 한 변의 길이가 a 인 정육면체이다. 대각선 CE 와 밑면의 대각선 EG 가이루는 $\angle CEG$ 의 크기를 x 라할 때, $\sin x$ 의 값은?
 - ① $\frac{\sqrt{2}}{2}$ ② $\frac{\sqrt{3}}{3}$ ③ $\sqrt{2}a$ ④ $\sqrt{3}a$ ⑤ $\frac{\sqrt{3}}{3}$

- 6. 다음 그림과 같이 $\overline{BC} = 4$ 인 예각삼각형 ABC 에 외접하는 원 O 의 반지름의 길이가 3 일 때, $\cos A \times \tan A$ 의 값은?
 - ① $\frac{2}{3}$ ④ $\frac{2\sqrt{2}}{3}$
- $3\frac{3}{4}$

BO 의 연장선과 원이 만나는 점을 A' 이라고 하면,


 $\overline{\rm BA'}$ 은 이 원의 지름이므로 $\overline{\rm BA'}=6$, $\angle {\rm A'CB}=90^{\circ}$, $\overline{\rm A'C}=2\sqrt{5}$ 이다.

 $2\sqrt{5}$ 이다. 같은 호에 대한 원주각의 크기는 같으므로 ∠A = ∠A \prime

 $\cos A = \frac{\sqrt{5}}{3}$, $\tan A = \frac{2\sqrt{5}}{5}$ 이므로

 $\cos A \times \tan A = \frac{2}{3}$ 이다.

다음 그림과 같은 평행사변형 ABCD 에서 대각선 BD 와 AC 의 교점을 P라 한다. ∠BCD = 60°, ĀD = 6cm, ĀB = 4cm 일 때, △APD 의 넓이를 구하여라.

답:
 ▷ 정답: 3√3 cm²

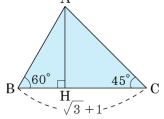
 $\triangle APD = \frac{1}{2} \triangle ABD$ $= \frac{1}{2} \times \frac{1}{2} \times 4 \times 6 \times \sin 60^{\circ}$ $= \frac{1}{2} \times \frac{1}{2} \times 4 \times 6 \times \frac{\sqrt{3}}{2}$ $= 3\sqrt{3} (cm^{2})$

 $\underline{\rm cm^2}$

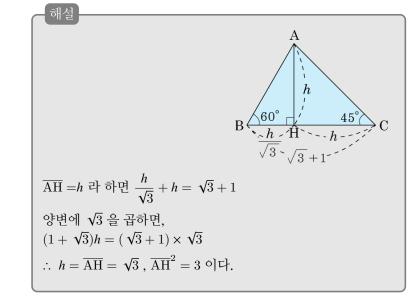
8. 다음 그림의 평행사변형 ABCD A 의 넓이가 $36\sqrt{3}$ 일 때, 평행사변 형 ABCD 의 둘레의 길이는?

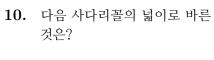
① 32

②34


③ 36

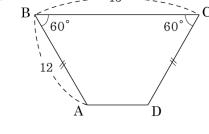
40

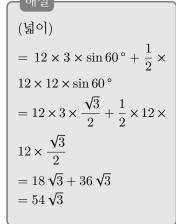

⑤ 42


 $\overline{\mathrm{AB}} = x$ 라 하면 $x \times 8 \times \sin 60^{\circ} = 36\sqrt{3}$ 따라서 둘레의 길이는 $2 \times (8+9) = 34$ 이다.

9. 다음 그림의 $\triangle ABC$ 에서 $\angle ABH = 60^\circ$, $\angle ACH = 45^\circ$, $\overline{BC} = \sqrt{3} + 1$ 일 때, \overline{AH} 의 길이를 x 라 하면 x^2 을 구하면?

① 2.2 ② 3 ③ 3.5 ④ 4 ⑤ 4.5






 $\boxed{3}54\sqrt{3}$

해설

