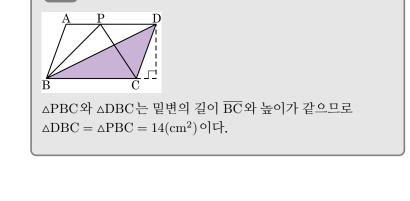
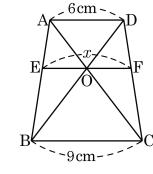

- 오른쪽 그림과 같은 평행사변형 ABCD 에 1. 서 $\angle A: \angle B=2:1$ 이다. $\overline{AB}=\overline{BE}$ 일 때, $\overline{
 m AE}$ 의 길이는? ① 8cm
 - ② 9cm 310cm
 - **4**11cm
- ⑤ 12cm

 $\angle A = 180^{\circ} \times \frac{2}{3} = 120^{\circ}$ $\angle B = 180^{\circ} \times \frac{1}{3} = 60^{\circ}$

 $\overline{AB} = \overline{BE}$ 이므로 $\angle BAE = (180^{\circ} - 60^{\circ}) \div 2 = 60^{\circ}$


따라서 $\triangle ABE$ 는 정삼각형이다. 따라서 $\overline{AE} = \overline{AB} = 11 \text{ (cm)}$

2. 다음 그림과 같이 $\Box ABCD$ 가 평행사변형이고 $\Delta PBC = 14 cm^2$ 일 때, 어두운 부분의 넓이는?



① 13cm² ④ 16cm² 214cm² $17cm^2$

 $3 15 \text{cm}^2$

3. 다음 그림과 같이 $\overline{AD}//\overline{BC}$ 인 사다리꼴의 대각선의 교점 O 를 지나 \overline{BC} 에 평행한 직선이 \overline{AB} , \overline{DC} 와 만나는 점을 각각 E, F 라고 할 때, \overline{EF} 의 길이는?

④ 7.4cm

① 7.1cm

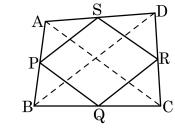
② 7.2cm ⑤ 7.5cm

③ 7.3cm

 $\overline{\mathrm{AD}}//\overline{\mathrm{BC}}$ 이므로 $\triangle\mathrm{AOD}$ \hookrightarrow $\triangle\mathrm{COB}$

해설

 $\therefore \overline{AO} : \overline{CO} = \overline{AD} : \overline{CB} = 6 : 9 = 2 : 3$ $\triangle AEO \bigcirc \triangle ABC$ 이므로


 $\begin{aligned} \overline{AO} : \overline{AC} &= \overline{EO} : \overline{BC} = 2 : 5 \\ \overline{EO} : 9 &= 2 : 5 : \overline{EO} = 3.6 (cm) \end{aligned}$

△DOF ∽ △DBC 이므로

 $\overline{OF} : \overline{BC} = \overline{DO} : \overline{DB} = 2 : 5$

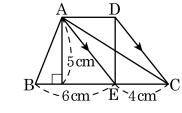
 $\overline{\mathrm{OF}}: 9 = 2:5 : \overline{\mathrm{OF}} = 3.6 (\mathrm{cm})$ $: \overline{\mathrm{EF}} = \overline{\mathrm{EO}} + \overline{\mathrm{OF}} = 3.6 + 3.6 = 7.2 (\mathrm{cm})$

다음 그림과 같은 □ABCD 의 네 변의 중점을 연결하여 만든 □PQRS 4. 의 둘레의 길이가 30cm 일 때, $\overline{AC} + \overline{BD}$ 를 구하면?

① 15

② 20

325


4 28

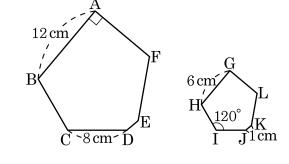
중점연결정리에 의해 $\frac{1}{2}\overline{AC}=\overline{SR}=\overline{PQ}$, $\frac{1}{2}\overline{BD}=\overline{PS}=\overline{QR}$ \therefore (\Box PQRS의 둘레의 길이) = $\overline{SR} + \overline{PQ} + \overline{PS} + \overline{QR} = \overline{AC} + \overline{BD} =$

- 5. 가로, 세로의 길이가 각각 $2.5\,\mathrm{m}$, $2\mathrm{m}$ 인 천의 가격이 $5\,\mathrm{t}$ 만 원이라고 할 때, 가로 세로의 길이가 각각 $7.5\,\mathrm{m}$, $6\,\mathrm{m}$ 인 같은 종류의 천의 가격은? (단, 천의 가격은 천의 넓이에 비례한다.)
 - ① 30만원 ② 35만원 ③ 40만원 ④45만 원⑤ 50만 원

천의 닮음비는 1:3 이므로 그 넓이의 비는 $1^2:3^2=1:9$ 따라서 구하는 천의 가격은 $9 \times 5 = 45$ (만 원)이다.

다음 그림의 $\overline{\rm AD}\,/\!/\,\overline{\rm BC}\,$ 인 사다리꼴 ABCD에서 $\overline{\rm AE}\,/\!/\,\overline{\rm DC}\,$ 일 때, \Box ABED의 넓이는? **6.**

 \bigcirc 25cm² $40 \, \mathrm{cm}^2$


 $2 30 \text{cm}^2$ \bigcirc 45cm²

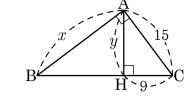
 35cm^2

 $\overline{
m AE}\,/\!/\,\overline{
m DC}$ 이므로 밑변과 높이가 같아 $\Delta
m AEC = \Delta
m ADE$ 이다.

 $\Box ABED = \triangle ABE + \triangle ADE = \triangle ABE + \triangle AEC = \triangle ABC$ $\therefore \Box ABED = \frac{1}{2} \times 5 \times (6+4) = 25 (cm^2)$

7. 다음 그림에서 두 육각형이 닮은 도형일 때, $\angle C$ 의 크기가 x° 이고, \overline{IJ} 의 길이가 ycm 이다. x+y의 값을 구하시오.

▷ 정답: 124


▶ 답:

대응각의 크기는 같으므로 $\angle C = \angle I = 120^\circ$

해설

 $\overline{\text{CD}}:\overline{\text{IJ}}=\overline{\text{AB}}:\overline{\text{GH}}$ 이므로 8:y=12:6=2:1 $\overline{\text{IJ}}=4(\text{cm})$ 따라서 x+y=124이다.

8. 다음 그림에서 x - y 의 값을 구하여라.

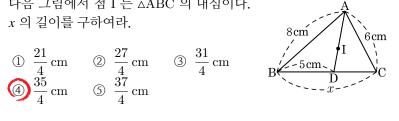
► 답: ▷ 정답: 8

 $15^2 = 9\overline{BC}, \ \overline{BC} = 25$

해설

 $\overline{BH} = 25 - 9 = 16$ $x^2 = 16 \times 25 = 400$

x > 0 이므로 x = 20


 $y^2 = 16 \times 9 = 144$

y > 0이므로 y = 12 $\therefore x - y = 20 - 12 = 8$

- 9. 다음 그림에서 점 I 는 △ABC 의 내심이다. x 의 길이를 구하여라.

②
$$\frac{27}{4}$$
 cm ③ $\frac{37}{4}$ cm

점 I 가 내심이므로 \overline{AD} 는 $\angle A$ 의 이등분선이다. $\therefore \overline{AB} : \overline{AC} = \overline{BD} : \overline{CD}$ $8 : 6 = 5 : \overline{CD}$ $4 \overline{CD} = 15$, $\overline{CD} = \frac{15}{4}$ (cm)

$$4\overline{\mathrm{CD}} = 15$$
 , $\overline{\mathrm{CD}} = \frac{15}{2}$

$$\overline{BC} = \overline{BD} + \overline{CD} = 5 + \frac{15}{4} = \frac{35}{4} (\text{cm})$$

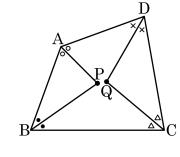
- 10. 키가 150cm 인 민수가 3m 높이의 농구대 옆에 서 있다. 민수의 그림 자의 길이가 1m 일 때, 농구대의 그림자는?
 - ① 1m ② 1.5m ③ 2m ④ 2.5m ⑤ 2.6m

해설

 $150 {
m cm} = 1.5 {
m m}$ 이고, 그림자의 길이가 $1 {
m m}$ 로 나타나므로 농구대의 그림자를 x 라 하면 1.5:1=3:x $\therefore x=2 {
m (m)}$

11. 내접원의 반지름이 3cm 인 △ABC 의 내심 I 를 지나고 변 BC 에 평행한 직선이 변 AB, AC 와 만나는 점을 각각 D, E 라 할 때, □DBCE의 넓이를 구하여라.

 $\underline{\mathrm{cm}^2}$


 ▶ 정답: 42cm²

답:

 $\overline{\mathrm{BI}}$ 를 그으면 점 I 는 내심이므로 $\angle\mathrm{DBI} = \angle\mathrm{IBC}$

또한, \overline{DI} $//\overline{BC}$ 이므로 $\angle IBC = \angle DIB$ (엇각) \therefore $\angle DBI = \angle DIB$ 같은 방법으로 \overline{CI} 를 그으면 $\angle ECI = \angle EIC$ 따라서 $\overline{DB} = \overline{DI} = 4 \mathrm{cm}$, $\overline{EI} = \overline{EC} = 6 \mathrm{cm}$ 이므로 $\overline{DE} = 10 \mathrm{cm}$ 가 된다. 사각형 DBCE 에서 넓이는 $\frac{1}{2} \times (10 + 18) \times 3 = 42 (\mathrm{cm}^2)$ 이다.

12. 사각형 ABCD 에서 $\angle A$ 와 $\angle B$ 의 이등분선의 교점을 P , $\angle C$ 와 $\angle D$ 의 이등분선의 교점을 Q 라 할 때, $\angle APB + \angle DQC$ 의 크기를 구하여라.

① 90°

② 150°

③180°

④ 210°

⑤ 240°

 $\angle {\rm PAB} \, = \, a, \ \angle {\rm PBA} \, = \, b, \ \angle {\rm DCQ} \, = \, c, \ \angle {\rm CDQ} \, = \, d$ 라 하면,

해설

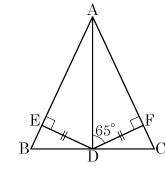
□ABCD 에서 $2a + 2b + 2c + 2d = 360^{\circ}$: $a + b + c + d = 180^{\circ}$

 \triangle ABP 와 \triangle DQC 에서 $a+b+\angle {\rm APB}+c+d+\angle {\rm DQC}=360^{\circ}$

 $\therefore \ \angle APB + \angle DQC = 180^{\circ}$

13. 다음 그림의 정사각형 ABCD 에서 ∠EBC = 40° 일 때, ∠DPE 의 크기를 구하여라.

▶ 답: ▷ 정답: 10_°


 \triangle BPC \equiv \triangle DPC 이므로

해설

 $\angle PDC = 40^{\circ}$, $\angle BEC = 50^{\circ}$ 이다.

 $\angle \mathrm{DPE} + \angle \mathrm{PDE} = \angle \mathrm{BEC} = 50^{\circ}$ 이므로 $\angle \mathrm{DPE} = 10^\circ$ 이다.

14. 다음 그림과 같은 $\triangle ABC$ 에서 $\overline{DE}=\overline{DF}$ 이고 $\angle AED=\angle AFD=90^\circ$ 이다. $\angle ADF=65^\circ$ 일 때, $\angle BAC$ 의 크기는?

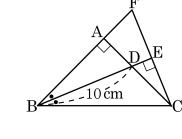
① 35°

② 40°

③ 45°

4 50°

⑤ 55°


△AED ≡ △AFD (RHS 합동) 이므로

해설

 $\angle EAD = \angle FAD = 90^{\circ} - 65^{\circ} = 25^{\circ}$ $\therefore \angle BAC = 2\angle EAD = 2 \times 25^{\circ} = 50^{\circ}$

15. 그림에서 $\overline{AB} = \overline{AC}$, $\angle BAC = \angle CEB = 90^\circ$, \overline{BE} 가 $\angle B$ 의 이등분선 이고, $\overline{BD} = 10 \mathrm{cm}$ 일 때, \overline{EF} 의 길이를 구하시오.

 $\underline{\mathrm{cm}}$

정답: 5 cm

답: