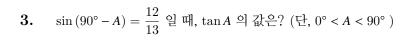

1. 다음 그림에서 x 의 값을 구하면?

① $\sqrt{41}$ ② 3.2 ③ $\sqrt{34}$ ④ 3 ⑤ $4\sqrt{2}$

 $\overline{\text{ON}} = \overline{\text{OM}} , x = \overline{\text{OB}}$ $\triangle \text{OMB}$ 에서 $\overline{\text{OB}} = \sqrt{5^2 + 4^2} = \sqrt{41}$

다음 그림과 같이 5.0ptBC = 5.0ptCD = 5.0ptDE일 때, ∠BAE **2**. 의 크기는?

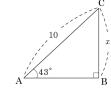
① 60° ② 70° ③ 80°


4990°

⑤ 100°

 $i\,)$ 호의 길이가 서로 같으면 원주각의 크기가 서로 같다.

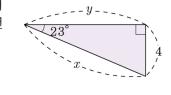
 $\angle BAC = \angle CAD = \angle DAE = 30^{\circ}$ ii) $\angle BAE = \angle BAC + \angle CAD + \angle DAE$


 $= 30\,{}^{\circ} + 30\,{}^{\circ} + 30\,{}^{\circ} = 90\,{}^{\circ}$

sin
$$(90^{\circ} - A) = \cos A$$

$$\tan A = \frac{5}{12}$$

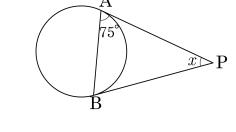
4. 다음 그림의 ΔABC 에서 삼각비의 표를 보고 x 의 값을 구하면?


〈삼각비의 표〉

x	sin x	cos x	tan x
43°	0.6820	0.7314	0.9325
44°	0.6947	0.7193	0.9657
45°	0.7071	0.7071	1.0000
46°	0.7193	0.6947	1.0355
47°	0.7314	0.6821	1.0724

① 6.82 ② 6.947 ③ 7.071 ④ 7.193 ⑤ 7.314

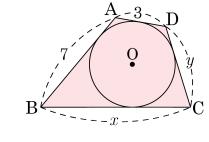
 $\sin 43^\circ = \frac{x}{10}$ ○]□로 $x = 10 \times \sin 43^\circ = 10 \times 0.682 = 6.82$ ∴ 6.82


다음 직각삼각형에서 x, y의 값을 주어 **5.** 진 각과 변을 이용하여 삼각비로 나타낸 것은?

- ① $x = 4 \tan 23^{\circ}$, $y = \frac{4}{\sin 23^{\circ}}$ ② $x = \frac{4}{\sin 23^{\circ}}$, $y = \frac{4}{\tan 23^{\circ}}$ ③ $x = \frac{4}{\sin 23^{\circ}}$, $y = \frac{4}{\cos 23^{\circ}}$ ④ $x = \frac{4}{\cos 23^{\circ}}$, $y = 4 \sin 23^{\circ}$ ⑤ $x = 4 \tan 23^{\circ}$, $y = \frac{4}{\sin 23^{\circ}}$

해설
$$\tan 23^\circ = \frac{4}{y}, \sin 23^\circ = \frac{4}{x}, \cos 23^\circ = \frac{y}{x}$$
이므로 $x = \frac{4}{\sin 23^\circ}$, $y = \frac{4}{\tan 23^\circ}$

6. 다음 그림에서 \overline{PA} 와 \overline{PB} 는 점 A,B 를 각각 접점으로 하는 원 O 의 접선이다. $\angle BAP$ 의 크기가 75° 일 때, $\angle x$ 의 크기를 구하여라.

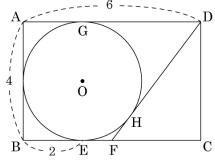


▷ 정답: 30°

▶ 답:

 $\triangle ABP$ 는 $\overline{AP} = \overline{BP}$ 인 이등변삼각형이다. $\angle x = 180^{\circ} - 75^{\circ} \times 2 = 30^{\circ}$

7. 다음 그림에서 원 O 는 사각형 ABCD 의 내접원일 때, x-y 의 값은?


① -6 ② -4 ③ -2 ④ 2

34

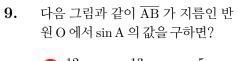
원이 내접하는 사각형에서 두 대변의 합이 서로 같다.

 $x+3=y+7 \quad \therefore \ x-y=4$

8. 다음 그림과 같이 직사각형 ABCD 의 세 변의 접하는 원 O 가 있다. $\overline{\mathrm{DF}}$ 가 원의 접 선이고 세 점 E, G, H 가 접 점일 때, 다음 중 옳지 <u>않은</u> 것은?

② $\overline{\mathrm{DH}}$ 의 길이의 길이는 4 이다.

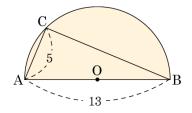
① \overline{AG} 의 길이는 2 이다.

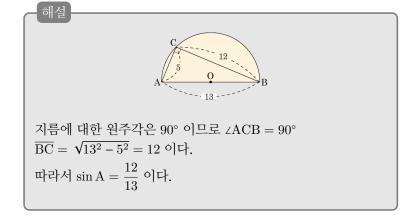

- ③ $\overline{\mathrm{EF}} = 1$ 이다.
- ④ $\overline{\mathrm{CF}} = 4$ 이다.
- ⑤ ΔCDF 의 넓이는 6 이다.

③ $\overline{\mathrm{EF}} = x$ 라 할 때, $\overline{\mathrm{CF}}$ 의 길이는

해설

 $\overline{\mathrm{CF}}=(4-x),\;\overline{\mathrm{DF}}=(4+x)$ 이므로 피타고라스의 성질에 의해 $(4+x)^2 = 4^2 + (4-x)^2$


 $\therefore x = 1$ $\textcircled{4} \ \overline{\text{CF}} = 4 - 1 = 3$



 $\begin{array}{cc}
\frac{12}{13} & \boxed{2} \\
\frac{13}{5} & \boxed{3}
\end{array}$

10. $\cos^2 60^\circ \times \tan 45^\circ - \sin^2 60^\circ \times \cos 45^\circ$ 의 값은?

- ① $\frac{1-2\sqrt{2}}{8}$ ② $\frac{1-3\sqrt{2}}{8}$ ③ $\frac{2-3\sqrt{2}}{8}$ ④ $\frac{3-2\sqrt{2}}{8}$ ⑤ $\frac{4-3\sqrt{2}}{8}$

$$\cos^2 60^\circ \times \tan 45^\circ - \sin^2 60^\circ \times \cos 45^\circ$$

$$= \left(\frac{1}{2}\right)^2 \times 1 - \left(\frac{\sqrt{3}}{2}\right)^2 \times \frac{\sqrt{2}}{2}$$

$$= \frac{1}{4} - \frac{3\sqrt{2}}{8} = \frac{2 - 3\sqrt{2}}{8}$$

$$=\frac{1}{4}-\frac{1}{8}=\frac{1}{8}$$

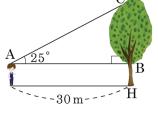
11. x 축의 양의 방향과 이루는 각이 45° 인 직선과 x 축과 y 축으로 둘러싸인 부분의 넓이가 12 일 때, 이 직선의 y 절편이 될 수 있는 값을 모두 구하여라.

▶ 답:

▶ 답:

ightharpoonup 정답: $2\sqrt{6}$ ightharpoonup 정답: $-2\sqrt{6}$

x 축과 이루는 각이 45° 이므로


해설

직선의 x 절편을 a, y 절편을 b 라 할 때, $\frac{b}{a} = \pm \tan 45^\circ = \pm 1$

 $\frac{1}{2} \mid a \parallel b \mid = 12$

 $\therefore b = \pm 2\sqrt{6}$

12. 재민이는 나무의 높이를 알아보려고 다음 그림과 같이 30m 떨어진 지점에서 나무를 올려다 본 각의 크기를 재었다. 재민이의 눈높이가 150cm 일 때, 나무의 높이를 구하여라. (단, tan 25° = 0.4663 이고, 결과값은 소수 둘째 자리에서 반올림한다.)

➢ 정답: 15.5 m

▶ 답:

BC = 30 tan 25° = 30 × 0.4663 = 13.989(m) 이므로

나무의 높이는 13.989 + 1.5 = 15.489 ≒ 15.5(m) 이다.

 $\underline{\mathbf{m}}$

13. 다음 그림과 같은 삼각형의 넓이를 구 하여라.

 $6\sqrt{3}\,\mathrm{cm}$

ightharpoons 정답: $9\sqrt{3}$

▶ 답:

(△ABC의 넓이) = $\frac{1}{2} \times 6\sqrt{3} \times 6 \times \sin 30^{\circ}$ = $\frac{1}{2} \times 6\sqrt{3} \times 6 \times \frac{1}{2}$ = $9\sqrt{3}$

∠ABC = 30° 이므로

14. 다음 그림의 □ABCD 에서 두 대각선의 길이가 24cm, 16cm 이고 두 대각선이 이루는 각의 크기가 70°일 때, □ABCD 의 넓이를 반올림하여 일의 자리까지 구하여라. (단, sin 70° = 0.94)

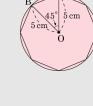
답: cm²

 당

 □

 정답:

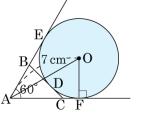
 180 cm²


(넓이) = $\frac{1}{2} \times 16 \times 24 \times \sin 70^{\circ}$ = $\frac{1}{2} \times 16 \times 24 \times 0.94$ = $180.48 = 180 \text{ cm}^2$ 15. 다음 그림과 같이 반지름의 길이가 5 cm 인 원에 내접하는 정팔각형의 넓이는 $a\sqrt{b}$ cm² 이다. a-b 의 값은? (단, b는 최소의 자연수)

(5) 48

다음 그림과 같이 주어진 정팔각형의 넓이는 ΔOAB 의 넓이의

8 배와 같다.


따라서

(정팔각형의 넓이) $= 8 \times \triangle OAB$

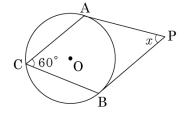
 $= 8 \times \frac{1}{2} \times 5 \times 5 \times \sin 45^{\circ}$ $= 100 \times \frac{\sqrt{2}}{2} = 50 \sqrt{2} (\text{cm}^2)$

a = 50, b = 2 이므로 a - b = 50 - 2 = 48 이다.

16. 다음 그림에서 \overline{AE} , \overline{AF} 는 원 O 의 접선이 다. $\overline{\mathrm{AO}} = 7\,\mathrm{cm}$ 이고 $\angle \mathrm{BAC} = 60\,^{\circ}$ 일 때, △ABC 의 둘레의 길이를 구하여라. (단, 한 내각이 60°인 직각삼각형에의 세변의 길이비는 $1: \sqrt{3}: 2$ 이다.)

▶ 답: ▷ 정답: 7√3 cm

 $\underline{\mathrm{cm}}$


해설

 $\triangle \mathrm{OAF}$ 에서 $\angle \mathrm{OAF} = 30\,^{\circ}$ $\overline{AO}: \overline{AF} = 2: \sqrt{3}$

 $\therefore \overline{AF} = 7 \times \frac{\sqrt{3}}{2} = \frac{7\sqrt{3}}{2} (\,\mathrm{cm})$ 또한 $\overline{\mathrm{BE}} = \overline{\mathrm{BD}}, \ \overline{\mathrm{DC}} = \overline{\mathrm{CF}}$ 따라서 △ABC 의 둘레의 길이는 $\overline{\mathrm{AB}} + \overline{\mathrm{AC}} + (\overline{\mathrm{BD}} + \overline{\mathrm{DC}})$

 $= (\overline{AB} + \overline{BE}) + (\overline{AC} + \overline{CF})$ $=2\overline{AF}=7\sqrt{3}(\,\mathrm{cm})$

17. 다음 그림에서 점 A, B는 원 O 에 접하는 접점이고 ∠ACB = 60°일 때, ∠APB 의 크기를 구하여라.

➢ 정답: 60 º

▶ 답:

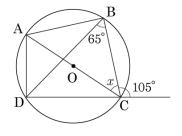
점 A, B에서 원의 중심 O에 이르는 보조선을 그으면 ∠OBP =

∠OAP = 90°이다. 또한, ∠AOB = 2×∠C = 2×60° = 120°이다. ∴ x = 360° - 90° - 90° - 120° = 60°

.. x = 500 50 50 120 = 50

18. 다음 그림과 같이 사각형 ABCD 의 외접원 위의 호 AD 위에 점 E 를 잡을 때, ĀB = ĀD 이고 ∠C = 100° 이면 ∠AED 의 크기는 아이다. 안에 알맞은 수를 구하여라.

▷ 정답: 130


▶ 답:

 $\angle BAD = 80^{\circ}$, $\triangle ABD 는 \overline{AD} = \overline{AB}$ 인 이등변삼각형이므로

해설

∠ADB = ∠ABD = 50°이다. 따라서 □ABDE 에서 ∠ABD + ∠AED = 180°이므로 ∠AED = 130°이다.

19. 다음 그림과 같은 내접사각형 ABCD 에 대하여 \overline{AC} 는 원 O 의 지름일 때, x 의 크기를 구하여라.

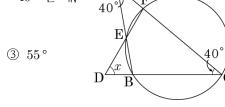
▷ 정답: 50°

 $\angle ABC = 90\,^{\circ}$, $\angle BAD = 105\,^{\circ}$ 이므로 $\angle ABD = 90\,^{\circ} - 65\,^{\circ} = 25\,^{\circ}$

해설

▶ 답:

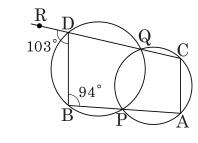
 $\Delta BAD \text{ on all } \Delta BDA = 180 \, ^{\circ} - (105 \, ^{\circ} + 25 \, ^{\circ}) = 50 \, ^{\circ}$ 한편, 5.0pt \overrightarrow{AB} 에 대한 원주각 $\angle BDA = \angle x$ 이므로 $\angle x = 50$ °이다.


20. 다음 그림에서 □EBCF 는 원에 내접하 고 ∠BAC = 40°, ∠BCA = 40° 일 때, ∠FDC 의 값을 구하면?

② 50° ① 45°

40°

⑤ 65°


∠BEF = 140° (∵ ∠ACB 의 대각) 이고, ∠DBE = 80°이다.

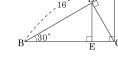
해설

ΔDBE 에서 한 외각의 크기의 합은 이웃하지 않는 두 내각의 크기의 합과 같으므로 $140^{\circ} = x^{\circ} + 80$

 $\therefore x^{\circ} = 60^{\circ}$

21. 다음 그림에서 $\angle A$ 의 크기로 적절한 것을 고르면?

③ 85.5°


⑤ 87°

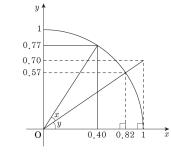
 $\angle PQD = 180^{\circ} - 94^{\circ} = 86^{\circ}$ $\therefore \angle A = \angle PQD = 86^{\circ}$

① 84° ② 85°

해설

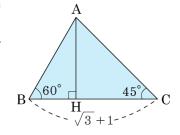
22. 다음 그림과 같이 $\angle ACB = 90^{\circ}$ 인 직각 삼각형 ABC 가 있다. 꼭짓점 C 에서 변 AB 에 내린 수선의 발을 D , 점 D 에서 변 BC 에 내린 수선의 발을 E 라 한다. $\overline{AB}=16$, $\angle ABC=30^\circ$ 일 때, \overline{EC} 의 길이를 구하여라.

ightharpoonup 정답: $2\sqrt{3}$


답:

 $\triangle ABC$ 에서 $\sin 30^\circ = \frac{\overline{AC}}{16} = \frac{1}{2}$, 따라서 $\overline{AC} = 8$ 이다. $\triangle ADC$ 에서 $\angle ACD = 30^\circ$ 이므로 $\cos 30^\circ = \frac{\overline{CD}}{8} = \frac{\sqrt{3}}{2}$, 따라서

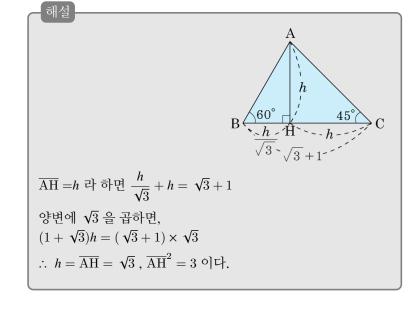
 $\overline{\mathrm{CD}} = 4\sqrt{3}$ 이다. $\Delta {
m DEC}$ 에서 $\angle {
m CDE}=30\,^{\circ}$ 이므로 $\sin 30^{\circ}=\dfrac{\overline{
m EC}}{4\,\sqrt{3}}=\dfrac{1}{2},$ 따라서


 $\overline{\mathrm{EC}} = 2\sqrt{3}$ 이다.

23. 다음 그림과 같이 반지름의 길이가 1 인 사분원에서 다음 중 <u>틀린</u> 것은?

- ① $\sin(x + y) = 0.77$ ③ $\cos y = 0.82$
- $\Im \tan y = 0.70$

24. 다음 그림의 $\triangle ABC$ 에서 $\angle ABH = 60^{\circ}$, $\angle ACH = 45^{\circ}$, $\overline{BC} = \sqrt{3} + 1$ 일 때, \overline{AH} 의 길이를 x 라 하면 x^2 을 구하면?


① 2.2

2

② 3 3.5

4

⑤ 4.5

25. 다음 그림에서 두 직선 PA 와 PB 는 원 O 의 접선이고, ∠APB = 40°이다. 5.0ptAC : 5.0ptCB = 3 : 2 인 점 C 를 잡아 OC 의 연장선과 PB 와의 교점을 D 라고 할 때, ∠ODB = ()°이다. ()안에 알맞은 수를 구하여라.

 ► 답:

 ▷ 정답:
 34

해설

 $\angle A = \angle B = 90$ ° 이므로 $\angle AOB = 140$ ° 이다. $5.0 pt \widehat{AC} : 5.0 pt \widehat{CB} = 3 : 2$ 이므로

 $\angle DOB = 140^{\circ} \times \frac{2}{3+2} = 56^{\circ}$ 이다.

 $\therefore \angle ODB = 90^{\circ} - 56^{\circ} = 34^{\circ}$