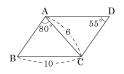


2. $\sin 90^{\circ} + \cos 0^{\circ} - \tan 0^{\circ} = A$, $\sin 0^{\circ} + \tan 0^{\circ} + \cos 90^{\circ} = B$ 라 할 때, AB 의 값은?

$$A = 1 + 1 - 0 = 2$$
 , $B = 0 + 0 + 0 = 0$ 이므로
 $\therefore AB = 2 \times 0 = 0$

해설
$$\cos x = \frac{4\sqrt{3}}{8} = \frac{\sqrt{3}}{2} \text{ 이므로 } x = 30^{\circ} \text{ 이다.}$$

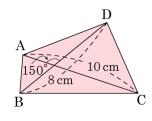

다음 그림에서
$$\overline{BC} = 20$$
, $\angle B = 120$ ° A 이고 △ABC 의 넓이가 $40\sqrt{3}$ 일 때, \overline{AB} 의 길이를 구하면?

① 8 ② 11 ③ 12

따라서 x = 8 이다.

해설
$$\frac{1}{2} \times x \times 20 \times \sin(180^{\circ} - 120^{\circ}) = 40\sqrt{3}$$
$$\frac{1}{2} \times x \times 20 \times \sin 60^{\circ} = 40\sqrt{3}, \ 10x \times \frac{\sqrt{3}}{2} = 40\sqrt{3}$$
$$5\sqrt{3}x = 40\sqrt{3}$$

5. 다음 그림과 같은 평행사변형의 넓이를 구하면?


① 30 ② $30\sqrt{2}$ ③ $30\sqrt{3}$ ④ $32\sqrt{2}$ ⑤ $32\sqrt{3}$

해설
(평행사변형 ABCD 의 넓이)
$$= \frac{1}{2} \times 10 \times 6 \times \sin 45^{\circ} \times 2$$

$$= \frac{1}{2} \times 10 \times 6 \times \frac{\sqrt{2}}{2} \times 2$$

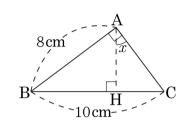
$$= 30\sqrt{2}$$

6. 다음 그림에서 □ABCD 의 넓이를 구하여 빈 칸을 채워 넣어라.

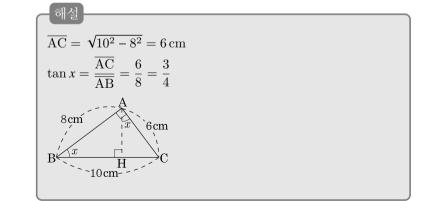
- ▶ 단:
- ▷ 정답: 20

 $(사각형의 넓이) = 대각선 \times 대각선 \times \frac{1}{2} \times \sin \theta$

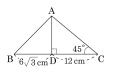
따라서 $8 \times 10 \times \frac{1}{2} \times \sin 30^{\circ} = 20 \text{(cm}^2)$ 이다.


그림과 같은 직사각형에서
$$2\sin x +$$
 D $\cos x$ 의 값은?

① $\frac{30}{17}$ ② $\frac{31}{17}$ ③ $\frac{32}{17}$ ④ $\frac{33}{17}$ ⑤ $\frac{34}{17}$ ⑤ $\frac{34}{17}$


$$\overline{AC} = \sqrt{8^2 + 15^2} = \sqrt{289} = 17$$

$$\therefore 2\sin x + \cos x = 2 \times \frac{8}{17} + \frac{15}{17} = \frac{31}{17}$$


8. 다음 그림에서 $\angle BAC = 90^\circ$, $\overline{BC} \perp \overline{AH}$ 이고 $\angle HAC = x$ 라 할 때, $\tan x$ 의 값을 구하여라.

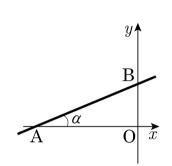
$$ightharpoonup$$
 정답: $rac{3}{4}$

9. 다음 그림과 같은 삼각형 ABC 에서 $\tan B$ 의 크기는?

.

①
$$\frac{1}{3}\sqrt{2}$$
 ② $\frac{2}{3}\sqrt{2}$ ③ $\frac{\sqrt{3}}{3}$ ④ $\frac{2}{3}\sqrt{3}$ ⑤ $\sqrt{3}$

10. 다음 그림과 같이 반지름의 길이가 1 인 원 위의 점 C에서 지름 AB에 내린 수선의 발을 D라 할 때, 다음 중 옳지 않은 것을 골라라.



$$\bigcirc$$
 $\overline{\text{CD}} = \cos 80^{\circ}$
 \bigcirc $\overline{\text{OD}} = \cos 80^{\circ}$

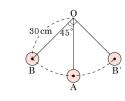
$$\bigcirc$$
 $\overline{AD} = 1 + \cos 80^{\circ}$

해설

11. 다음 그림과 같이 일차함수 $y = \frac{5}{12}x + 1$ 의 그래프가 x 축과 이루는 예각의 크기를 $\angle \alpha$ 라고 할 때, $\cos \alpha$ 의 값은?

①
$$\frac{5}{12}$$
 ② $\frac{17}{12}$ ③ $\frac{5}{13}$ ④ $\frac{7}{13}$ ⑤ $\frac{12}{13}$

12. 다음 삼각비의 표를 보고 주어진 다음을 만족하는 $\angle x$ 와 $\angle y$ 에 대하여 $\angle x + \angle y$ 의 크기를 구하여라.


 $\tan y = 0.3640$

각도	\sin	cos	tan
14°	0.2419	0.9703	0.2493
15°	0.2588	0.9659	0.2679
16°	0.2756	0.9613	0.2867
17°	0.2924	0.9563	0.3057
18°	0.3090	0.9511	0.3249
19°	0.3256	0.9455	0.3443
20°	0.3420	0.9397	0.3640
21°	0.3584	0.9336	0.3839

 $\sin x = 0.2588$

sin 15° = 0.2588 이므로
$$x = 15$$
 이고,
tan 20 = 0.3640 이므로 $y = 20$ 이다.
따라서 $\angle x + \angle y = 15^\circ + 20^\circ = 35^\circ$ 이다.

13. 다음 그림과 같이 시계의 추가 B 지점과 B' 지점 사이를 일정한 속도로 움직이고 있다. 추의 길이는 30cm 이고, ∠BOA = ∠AOB' = 45°, ∠BOB = 90° 이다. 추가 가장 높은 위치에 있을 때, 추는 A 지점을 기준으로 하여 몇 cm 의 높이에 있는가?

- ① $15(2 \sqrt{2})$ cm ② $20(2 \sqrt{2})$ cm ③ $25(2 \sqrt{2})$ cm
 - $4 \ 30(2 \sqrt{2})$ cm $35(2 \sqrt{2})$ cm

점 B 에서 \overline{OA} 에 내린 수선의 발을 C 라 하면 $\cos 45^\circ = \frac{\overline{OC}}{\overline{OB}} = \frac{\overline{OC}}{30} = \frac{\sqrt{2}}{2}$, $\overline{OC} = 15\sqrt{2}\,\mathrm{cm}$ 이다. 따라서 $\overline{AC} = \overline{OA} - \overline{OC}$

부서
$$AC = OA - OC$$

= $30 - 15\sqrt{2}$

 $=15(2-\sqrt{2})\mathrm{cm}$ 이다.

14. 다음 그림과 같은 삼각형에서
$$\overline{AH}$$
 A 의 길이는?

① $\frac{\sqrt{3} - \sqrt{6} - 9}{2}$
② $\frac{3 + \sqrt{3}}{2}$
③ $\frac{3\sqrt{3}}{2}$
④ $\frac{3 + 5\sqrt{3}}{2}$
⑤ $\frac{\sqrt{3} - \sqrt{6}}{2}$

해설
$$\overline{AH} = \frac{\sqrt{3} + 2}{\tan(90^{\circ} - 45^{\circ}) + \tan(90^{\circ} - 60^{\circ})}$$

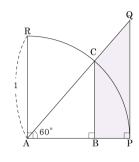
$$= \frac{\sqrt{3} + 2}{\tan 45^{\circ} + \tan 30^{\circ}}$$

$$= \frac{\sqrt{3} + 2}{1 + \frac{\sqrt{3}}{3}}$$

$$= \frac{3(\sqrt{3} + 2)}{3 + \sqrt{3}}$$

$$= \frac{(\sqrt{3} + 2)(3 - \sqrt{3})}{2}$$

$$= \frac{3 + \sqrt{3}}{2}$$


15. 삼각형의 세 내각의 크기의 비가 1:1:2 인 삼각형에서 세 각 중비가 1 인 각의 크기를 $\angle A$ 라고 할 때, $\sin A + \cos A + \tan A$ 의 값이 $a+b\sqrt{2}$ 이다. a+b 의 값은?(단, a,b는 유리수)

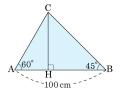
해설

삼각형의 세 내각의 크기의 합은
$$180^\circ$$
 이므로 $k^\circ + k^\circ + 2k^\circ = 4k^\circ = 180^\circ$ $k^\circ = 45^\circ$ 따라서 $\sin 45^\circ = \frac{\sqrt{2}}{2}, \; \cos 45^\circ = \frac{\sqrt{2}}{2}, \; \tan 45^\circ = 1$ 이므로 $\sin A + \cos A + \tan A = 1 + \sqrt{2}$ 따라서 $a + b$ 의 값은 2 이다.

삼각형의 세 내각의 크기의 비가 1:1:2 이므로 각의 크기는 각각 k° , k° , $2k^{\circ}$ (k 는 자연수) 이다.

16. 다음 그림의 부채꼴 APR는 반지름의 길이가 1 이고 중심각의 크기가 90° 이다. 빗금친 부분의 넓이는?

①
$$\frac{\sqrt{3}}{8}$$
 ② $\frac{\sqrt{3}}{4}$ ③ $\frac{3\sqrt{3}}{8}$ ④ $\frac{\sqrt{3}}{2}$ ⑤ $\frac{5\sqrt{3}}{8}$


$$\Delta ABC$$
 에서 $\overline{AC}=1$, $\angle A=60^\circ$ 이므로 $\overline{AB}=\cos 60^\circ=\frac{1}{2}$, $\overline{BC}=\sin 60^\circ=\frac{\sqrt{3}}{2}$ ΔAPQ 에서 $\overline{AP}=1$, $\angle A=60^\circ$ 이므로 $\overline{AQ}=\frac{1}{\cos 60^\circ}=\frac{1}{\frac{1}{2}}=2$, $\overline{PQ}=\tan 60^\circ=\sqrt{3}$ (빗금친 부분의 넓이)= ΔAPQ 의 넓이- ΔABC 의 넓이

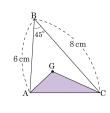
$$\triangle ABC$$
 의 넓이= $\frac{1}{2} \times \left(\frac{1}{2} \times \frac{\sqrt{3}}{2}\right) = \frac{\sqrt{3}}{8}$
 $\therefore (빗금친 부분의 넓이)=\frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{8} = \frac{3\sqrt{3}}{8}$

 $\triangle APQ$ 의 넓이= $\frac{1}{2} \times (1 \times \sqrt{3}) = \frac{\sqrt{3}}{2}$

해설

17. 다음 그림의 $\triangle ABC$ 에서 \overline{CH} 의 길이를 구하여라.

답:


 $\underline{\mathrm{cm}}$

ightharpoonup 정답: $150 - 50\sqrt{3}$ $\underline{\text{cm}}$

$$\overline{\text{CH}} = \frac{100}{\tan(90^{\circ} - 60^{\circ}) + \tan(90^{\circ} - 45^{\circ})}$$

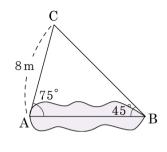
$$= \frac{100}{\frac{\sqrt{3}}{3} + 1} = 50(3 - \sqrt{3})(\text{cm})$$

18. 다음 그림에서 점 G가 △ABC의 무게중심일 때, △AGC의 넓이를 구하여라.

 $\underline{\mathrm{cm}^2}$

답:

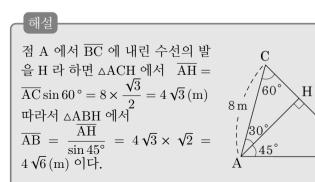
$$ightharpoonup$$
 정답: $4\sqrt{2}$ $ext{cm}^2$

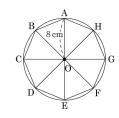

$$\triangle ABC = \frac{1}{2} \times 8 \times 6 \times \sin \theta$$

$$\Delta ABC = \frac{1}{2} \times 8 \times 6 \times \sin 45^{\circ}$$
$$= \frac{1}{2} \times 8 \times 6 \times \frac{\sqrt{2}}{2}$$
$$= 12\sqrt{2} \text{ (cm}^2)$$

따라서

$$\triangle AGC = \frac{1}{3} \triangle ABC = \frac{1}{3} \times 12 \sqrt{2} = 4 \sqrt{2} \text{ (cm}^2)$$


다음 그림과 같은 호수의 폭 AB 를 구하기 위하여 호수의 바깥쪽에 점 C 를 정하고 필요한 부분을 측량하였더니 AC = 8m, ∠BAC = 75°, ∠ABC = 45°였다.이 때, AB 의 길이를 구하여라.


▶ 답:

 $_{\rm m}$

정답: 4√6m

20. 다음 그림과 같이 반지름의 길이가 8cm 인 원에 내접하는 정팔각형의 넓이를 구하여라.

 $\underline{\mathrm{cm}^2}$

▷ 정답: 128 √2 cm²

답:

$$360^{\circ} \div 8 = 45^{\circ}$$

($\triangle AOH$ 의 넓이)= $\frac{1}{2} \times 8 \times 8 \times \sin 45^{\circ}$ 이므로

(정팔각형의 넓이)= $\frac{1}{2} \times 8 \times 8 \times \frac{\sqrt{2}}{2} \times 8 = 128\sqrt{2} \left(\text{cm}^2\right)$