- 다음 그림의 정사각형 ABCD 에서 점 $M \in \overline{AB}$ 1. 의 중점이다. \triangle MBP = $15\,\mathrm{cm}^2$ 일 때, \Box ABCD 의 넓이를 구하면?
- Μ
- $4180\,\mathrm{cm}^2$
- ② $140\,\mathrm{cm}^2$
- $3 160 \, \text{cm}^2$

 $5 200 \, \text{cm}^2$

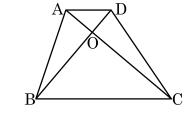
 \overline{BC} 의 중점 N 을 잡으면

해설

 $\triangle PMB \equiv \triangle PNB(SAS합동)$ $\triangle PCN = \triangle PNB = \triangle PMB = 15 (\,cm^2)$

 $\therefore \Box ABCD = 4 \triangle MBC = 4 \times 15 \times 3 = 180 (\text{ cm}^2)$

2. 다음 그림의 사다리꼴 ABCD 는 $\overline{\rm AD}//\overline{\rm BC}$, $\overline{\rm AO}$: $\overline{\rm OC}=1:3$ 이고 $\triangle {\rm ABD}=20{\rm cm}^2$ 일 때, $\triangle {\rm DBC}$ 의 넓이는?

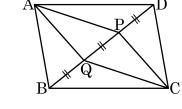


- ① 30cm² ④ 75cm²
- ② 45cm^2 ③ 90cm^2
- 360cm^2
- © 000m

 $\triangle ABO : \triangle AOD = 3 : 1$, $\triangle AOB = 15cm^2$,

 $1: 3 = 15 \text{cm}^2 : \triangle OBC , \triangle OBC = 45 \text{cm}^2 ,$ $\therefore \triangle ABC = \triangle DBC = \triangle AOB + \triangle OBC = 15 + 45 = 60 \text{(cm}^2)$

3. 다음 그림과 같은 평행사변형 ABCD의 대각선 DB를 삼등분하는 점을 각각 P, Q라고 하자. □ABCD = 900cm²일 때, □APCQ의 넓이를 구하여라. (단, 단위는 생략한다.)

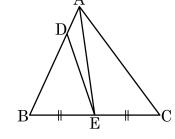


답:

➢ 정답: 300

 $\triangle APQ = \frac{1}{3}\triangle ABD = \frac{1}{3} \times \frac{1}{2}\Box ABCD = \frac{1}{6}\Box ABCD$ $\triangle CPQ = \frac{1}{3}\triangle CDB = \frac{1}{3} \times \frac{1}{2}\Box ABCD = \frac{1}{6}\Box ABCD$ $\Box APCQ = \triangle APQ + \triangle CPQ = \frac{1}{6}\Box ABCD + \frac{1}{6}\Box ABCD = \frac{1}{3}\Box ABCD$ $\therefore \Box APCQ = 300(cm^2)$

4. 다음 그림과 같이 $\triangle ABC$ 에서 $3\overline{AD}=\overline{DB}$ 이고 $\triangle DBE=60$ 일 때, $\triangle ABC$ 의 넓이를 구하여라.



▷ 정답: 160

답:

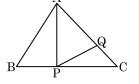
 $3\overline{\mathrm{AD}} = \overline{\mathrm{DB}}$, $\Delta\mathrm{DBE} = 60$ 이므로 $\Delta\mathrm{ADE} = 20$

해설

 $\triangle ABE = 20 + 60 = 80$ $\overline{BE} = \overline{CE}$ 이므로 $\triangle ABE = \triangle ACE$

BE = CE \circ □ □ □ △ABE = \therefore △ABC = 2△ABE = 160

다음 그림에서 $\overline{BP}:\overline{PC}=2:3$, $\overline{CQ}:\overline{QA}=1:2$ 이다. $\triangle ABC=20\,\mathrm{cm}^2$ 일 때, **5.** △APQ의 넓이를 구하여라.



▷ 정답: 8 <u>cm²</u>

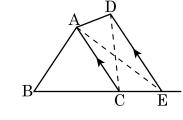
 $\underline{\mathrm{cm}^2}$

▶ 답:

 $\triangle ABP$ 와 $\triangle APC$ 의 높이는 같으므로 $\triangle ABP = 20 \times \frac{2}{5} = 8 (\, \mathrm{cm}^2)$

5 $\Delta APC = 20 \times \frac{3}{5} = 12 (\text{cm}^2)$ ΔPCQ 와 ΔAPQ 의 높이는 같다. $\Delta PCQ = 12 \times \frac{1}{3} = 4 (\text{cm}^2)$ $\Delta APQ = 12 \times \frac{2}{3} = 8 (\text{cm}^2)$

6. 다음 그림에서 \overline{AC} // \overline{DE} , \overline{BC} : \overline{CE} = 2 : 1 이고, △ABC = 24cm² 일 때, □ABCD의 넓이는?



① 30cm^2 ④ 48cm^2 236cm^2 50cm^2

 $3 40 \text{cm}^2$

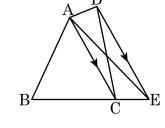
 $\triangle ABC = 24 \mathrm{cm}^2$ 이고 $\overline{BC}: \overline{CE} = 2:1$ 이므로 $\triangle ACE = 24 \times$

 $\frac{1}{2} = 12 (\text{cm}^2)$ $\triangle ACD = \triangle ACE \ (: \overline{AC} / / \overline{DE}, \overline{AC} \vdash \overline{S})$

 $\triangle ACD = \triangle ACE \ (:: AC // DE, AC 는 공통)$:: $\Box ABCD = \triangle ABC + \triangle ACD = \triangle ABC + \triangle ACE$

 $=24+12=36(\mathrm{cm}^2)$

7. 다음 그림과 같이 \overline{AC} $/\!/ \, \overline{DE}$ 이고 $\triangle ABC=25$, $\triangle ACE=10$ 일 때, $\Box ABCD$ 의 넓이를 구하여라.



답:▷ 정답: 35

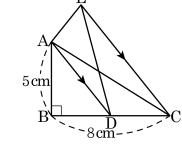
 $\overline{
m AC}$ $/\!/\,\overline{
m DE}$ 이므로 ${
m \triangle ACD}$ 와 ${
m \triangle ACE}$ 는 밑변 $\overline{
m AC}$ 가 같고 높이가

해설

같으므로 넓이가 같다. □ABCD = △ABC + △ACD = △ABC + △ACE

 $\therefore \Box ABCD = 25 + 10 = 35$

다음 그림에서 \overline{AD} $/\!/\!/ \overline{EC}$ 이고, $\overline{BD}=\frac{1}{2}\overline{BC}$ 이고, $\overline{AB}=5\mathrm{cm}$, $\overline{BC}=8\mathrm{cm}$ 일 때, ΔADE 의 넓이를 구하여라.



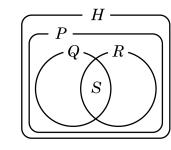
 $\underline{\mathrm{cm}^2}$

▷ 정답: 10 cm²

▶ 답:

 $\overline{\mathrm{BD}} = \frac{1}{2}\overline{\mathrm{BC}} = 4\mathrm{cm}$ 가 되므로 $\overline{\mathrm{DC}} = 4\mathrm{cm}$ 이다. $\overline{\mathrm{AD}} /\!\!/ \overline{\mathrm{EC}}$ 이므로 $\Delta \mathrm{ADE} = \Delta \mathrm{ADC}$ 이다. $\triangle \mathrm{ADE} = \frac{1}{2} \times 5 \times 4 = 10 (\mathrm{cm}^2)$

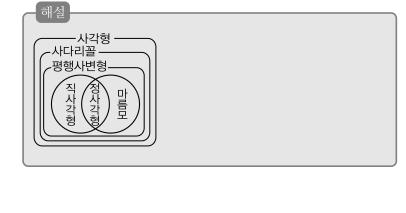
9. 다음 그림은 정사각형, 직사각형, 평행사변형, 사다리꼴, 마름모의 사이의 관계를 나타낸 것이다. 설명으로 옳은 것은?



수직이등분한다.
② P: 두 대각선은 길이가 같고, 서로 다른 것을 이등분한다.

① H: 이웃하는 두 변의 길이가 같고, 대각선은 서로 다른 것을

- ③ R: 두 대각선이 서로 다른 것을 수직이등분하고, 한 각의
- 크기가 90°이다. ④ Q: 두 대각선의 길이는 같지 않다.
- \bigcirc S: 두 대각선의 길이가 같고, 서로 다른 것을 수직이등분한다.



10. 다음 설명 중 옳지 <u>않은</u> 것은?

- ① 두 대각선이 서로 다른 것을 이등분하는 사각형은 등변사다리꼴이다.② 두 대각선의 길이가 같은 평행사변형은 직사각형이다.
- ② 구 대격전의 실어가 같는 항생자원생는 식사각생이다
- ③ 등변사다리꼴의 두 대각선은 길이가 같다.④ 두 대각선이 서로 수직인 평행사변형은 마름모이다.
- ⑤ 두 대각선이 서로 다른 것을 수직이등분하는 평행사변형은
- 마름모이다.

① 두 대각선이 서로 다른 것을 이등분하는 사각형은 평행사변

해설

형이다.

- **11.** 다음 중 정사각형의 성질이지만 마름모의 성질은 <u>아닌</u> 것은?
 - 두 대각의 크기가 각각 같다.
 두 대각선이 서로 직교한다.

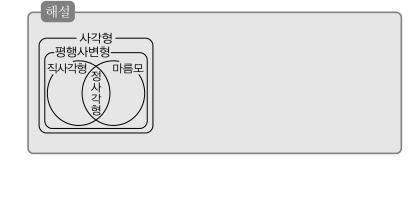
 - ③ 대각선에 의해 넓이가 이등분된다. ④ 두 대각선의 길이가 같다.
 - ③ 내각의 크기의 합이 360°이다.

마름모가 정사각형이 되기 위해서는 두 대각선의 길이가 같아야

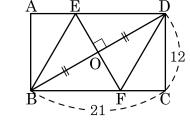
해설

한다. ______

- 12. 사다리꼴, 평행사변형, 직사각형, 마름모, 정사각형의 관계를 나타낸 것 중 옳은 것을 모두 고르면?
 - ① 정사각형은 직사각형이며 마름모이다. ② 사다리꼴은 직사각형이다.
 - ③ 평행사변형은 마름모이다.
 - ④ 평행사변형은 사다리꼴이다.
 - ⑤ 평행사변형은 마름모이다.



13. 다음 그림과 같이 직사각형 ABCD의 대각선 $\overline{\mathrm{BD}}$ 의 수직이등분선과 $\overline{
m AD}, \ \overline{
m BC}$ 와의 교점을 각각 E, F라 하고, $\overline{
m BF}: \overline{
m FC}=2:1$ 일 때, □EBFD의 넓이를 구하면?



▷ 정답: 168

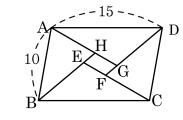
▶ 답:

 $\triangle \text{OED} \equiv \triangle \text{OFB (ASA 합동)}$ 이므로 $\overline{\text{OF}} = \overline{\text{OE}}$ 따라서 두 대각선이 서로 다른 것을 수직이등분하므로 □EBFD 는 마름모이다. $\overline{\mathrm{BF}}:\overline{\mathrm{FC}}=2:1$ 이므로 $\overline{\mathrm{BF}}=21 imesrac{2}{3}=14$ 이코,

 $\overline{\mathrm{CD}} = 12$ 이므로

넓이는 $14 \times 12 = 168$ 이다.

14. 다음 그림과 같은 평행사변형 ABCD에서 네 내각의 이등분선을 각각 연결하여 $\square EFGH$ 를 만들었다. $\overline{EH}:\overline{AD}=1:3,\,\overline{EF}:\overline{AB}=1:2$ 일 때, □EFGH의 둘레를 구하면?



1 20

② 25

③ 30

④ 35

⑤ 40

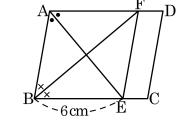
해설 $\angle A + \angle B = 180$ °이므로 $\angle EAB + \angle EBA = 90$ °, $\angle AEB = 90$ °

따라서 $\square EFGH$ 는 직사각형이다. \overline{EH} : \overline{AD} = 1 : 3이므로

 $\overline{\mathrm{EH}}: 15 = 1:3, \ \overline{\mathrm{EH}} = 5$ $\overline{\mathrm{EF}}:\overline{\mathrm{AB}}=1:2$ 이므로 $\overline{\mathrm{EF}}:10=1:2,\ \overline{\mathrm{EF}}=5$ 이다.

따라서 직사각형 중 가로와 세로의 길이가 같은 정사각형이고, 둘레는 2(5+5) = 20가 된다.

15. 다음 그림과 같은 □ABCD가 평행사변형이고, ∠A, ∠B의 이등분선이 BC, AD와 만나는 점을 각각 E, F라 할 때, □ABEF의 둘레의 길이는?



③24cm

④ 30cm

⑤ 36cm

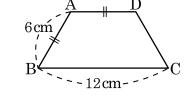
② 18cm

① 12cm

따라서 □ABEF의 둘레는 6 × 4 = 24(cm)이다.

대각선이 내각의 이등분선이 되는 사각형은 마름모이다.

16. 다음 그림과 같은 $\overline{AD}//\overline{BC}$ 인 사다리꼴 ABCD에서 $\angle B = \angle C$, $\overline{AB} = \overline{AD} = 6$ cm, $\overline{BC} = 12$ cm 일 때, $\angle B$ 의 크기를 구하여라.



 답:

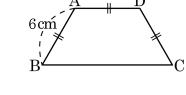
 ▷ 정답:
 60°

V 01. 00<u>-</u>

점 D를 지나고 \overline{AB} 와 평행한 직선을 그어 \overline{BC} 와 만나는 점을 E 라고 하면 $\Box ABED$ 는 $\overline{AB} = \overline{AD} = \overline{DE} = \overline{EB}$ 인 마름모이다.

B E E C $\Delta DEC는 세 변의 길이가 같은 정삼각형이므로 <math>\angle C = \angle B = 60^\circ$

17. 다음 그림의 $\square ABCD$ 는 \overline{AD} $//\overline{BC}$ 인 등변사다리꼴이다. $\overline{AB}=6\mathrm{cm}$, $\overline{AB} = \overline{AD} = \overline{CD}, \ \overline{AD} = \frac{1}{2}\overline{BC}$ 일 때, \overline{BC} 의 길이를 구하여라.



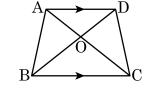
 $\underline{\mathrm{cm}}$

▷ 정답: 12<u>cm</u>

▶ 답:

 $\overline{\mathrm{BC}}$ 의 중점을 M 이라하면 △ABM에서 $\overline{AB} = \overline{BM}$ 이고, ΔDCM 에서 $\overline{CD} = \overline{CM}$ 이다. $\angle \mathrm{BMA} = \angle \mathrm{AMD} = \angle \mathrm{DMC} = 60^{\circ}$ 이므로 ΔABM 과 ΔDMC 는 정삼각형이고 $\overline{\mathrm{BC}}=6+6=12 \mathrm{(cm)}$ 이다.

18. 다음 등변사다리꼴 ABCD에 대한 설명 중 옳은 것은?



© 등변사다리꼴의정의에따라 밑변의양끝각의크기가같으므로

∠ABC = ∠DCB이다. ② △ABC와 △DCB에서 ĀB = DC이고, BC는 공통,

∠B = ∠C이므로 △ABC ≡ △DCB이다.

19. 정사각형 ABCD 에서 ∠ABF = 60° 이고, BF = CG = DH = AE 가 되도록 E, F, G, H 를 잡았을 때, 사각형 EFGH는 어떤 사각형 인지 말하여라.

, G, H 가각형 B 60° F C

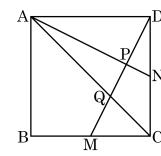
▷ 정답: 정사각형

▶ 답:

사각형 EFGH 에서 \angle AEH = 90° 이므로 \angle HEF = 90° 이고, $\overline{\rm EF}=\overline{\rm FG}=\overline{\rm GH}=\overline{\rm EH}$ 이므로 정사각형이다.

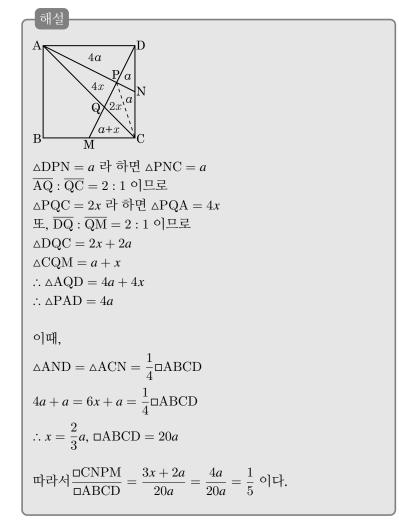
해설

 ${f 20}$. 다음 그림과 같이 정사각형 ABCD 에서 두 변 BC, CD 의 중점을 각각 M, N 이라 하고, 선분 DM 과 선분 AN, AC 의 교점을 각각 P, Q 라 할 때, $\frac{\text{DCNPM}}{\text{DABCD}}$ 의 값을 구하여라.



답:

ightharpoonup 정답: $rac{1}{5}$

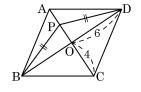


21. 다음 중 바르게 설명된 것을 모두 고르면?

- ① 이웃하는 두 변의 길이가 같은 평행사변형은 마름모이다. ② 두 대각선이 직교하는 직사각형은 정사각형이다.
- ③ 두 대각선의 길이가 같은 평행사변형은 정사각형이다.
- ④ 대각선이 한 내각을 이등분하는 평행사변형은 마름모이다.
- (4) 내각선이 한 내각을 이흥분하는 평행사면형은 마름모이다. ⑤ 이웃하는 두 변의 길이가 같은 평행사변형은 직사각형이다.

③은 직사각형, ⑤는 마름모

22. 다음 그림의 □ABCD 은 평행사변형이다. 대 각선 AC 위의 한 점 P 에 대하여 $\overline{BP} = \overline{DP}$ 일 때, □ABCD 의 넓이를 구하여라.

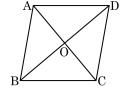


답:

▷ 정답: 48

 $\overline{\mathrm{OP}}$ 는 공통, $\overline{\mathrm{BO}} = \overline{\mathrm{DO}}$ 이고 $\overline{\mathrm{BP}} = \overline{\mathrm{DP}}$ 이므로 $\Delta \mathrm{BPO} \equiv \Delta \mathrm{DPO}$ (SSS 합동) $\triangle APB$ 와 $\triangle ADP$ 에서 \overline{AP} 는 공통이고 $\overline{\mathrm{BP}} = \overline{\mathrm{DP}}$ 이고, $\angle APB = \angle APD$ 이므로 $\triangle APD \equiv \triangle APB$ (SAS 합동) 따라서 ∠PAB = ∠PAD 이다. 따라서 □ABCD 는 마름모이고, ∠AOD = 90°이므로 넓이는 $\frac{1}{2} \times 4 \times 6 \times 4 = 48$ 이다.

23. 평행사변형 ABCD 에서 $\overline{AB}=3x-2$, $\overline{CD}=5x-6$, $\overline{AD}=-x+6$ 일 때, $\angle AOD$ 의 크기를 구하여라.



 > 정답: 90°

▶ 답:

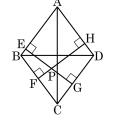
평행사변형 ABCD 이므로 $\overline{\mathrm{AB}} = \overline{\mathrm{CD}}$,

해설

3x-2=5x-6, x = 2 이다. AD = -2+6=4= AB 이므로 □ABCD 는 마름모이다. 따라서 ∠AOD = 90°이다.

24. 다음 그림과 같은 마름모 ABCD 에서 $\overline{AC}=8\mathrm{cm}$, $\overline{BD}=6\mathrm{cm}$, $\overline{AD}=5\mathrm{cm}$ 이다. 마름모 ABCD 의 내부에 한 점 P 를 잡을 때, 점 P 에서 네 변에 내린 수선의 길이의 합인 $\overline{PE}+\overline{PF}+\overline{PG}+\overline{PH}$ 의 길이를 구하여라.

 $\underline{\mathrm{cm}}$



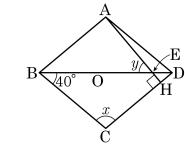
ightharpoonup 정답: $\frac{48}{5}$ $\underline{\mathrm{cm}}$

Э

 $\overline{AB} = \overline{BC} = \overline{CD} = \overline{DA} = 5$ cm 이고

 $\Box ABCD = \triangle PAB + \triangle PBC + \triangle PCD + \triangle PDA$ $\frac{1}{2} \times 8 \times 6 = \frac{1}{2} \times 5 \times (\overline{PE} + \overline{PF} + \overline{PG} + \overline{PH})$ $\therefore \overline{PE} + \overline{PF} + \overline{PG} + \overline{PH} = \frac{48}{5} \operatorname{cm} \mathsf{O}$ 다.

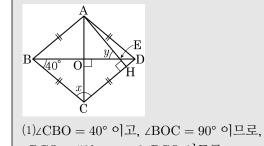
25. 다음 그림에서 \square ABCD 가 마름모일 때, $\angle x$ 와 $\angle y$ 의 크기는?



③ $x = 90^{\circ}, y = 40^{\circ}$

① $x = 90^{\circ}, y = 45^{\circ}$

- ② $x = 95^{\circ}, y = 45^{\circ}$
- ⑤ $x = 100^{\circ}, y = 40^{\circ}$
- $4x = 100^{\circ}, y = 50^{\circ}$



 $\angle BCO = 50^{\circ}$, $\angle x = 2 \angle BCO$ 이므로

 $\therefore \angle x = 100^{\circ}$

- (2) \triangle DEH 에서 \angle EDH $=40^{\circ}$, \angle DHE $=90^{\circ}$
- 이므로, ∠DEH = 50° ∠y = ∠DEH (맞꼭지각)이므로
- $\therefore \angle y = 50^{\circ}$
- \therefore $\angle x = 100^{\circ}$, $\angle y = 50^{\circ}$ 이다.

26. \Box ABCD 에서 $\angle x + \angle y = (\quad)^{\circ}$ 이다. () 안에 알맞은 수는?

3145 ① 135 ② 140

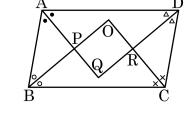
4 150 **⑤** 155 7 110°

해설 $\overline{\mathrm{AB}} = \overline{\mathrm{AD}}$ 이므로 $x = 35^\circ$

 $y = \angle BAD$ $\angle BAD = 180^{\circ} - (35^{\circ} + 35^{\circ}) = 110^{\circ}$

따라서 $y=110^\circ$ 이고, $\angle x+\angle y=35^\circ+110^\circ=145^\circ$ 이다.

27. 평행사변형 ABCD 의 네 각의 이등분선의 교점으로 만들어지는 사각 형 OPQR는 어떤 사각형인가?



① 평행사변형 ② 마름모 ④ 직사각형

해설

- ⑤ 정사각형
- ③ 등변사다리꼴

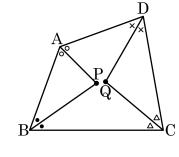
∠BAD + ∠ADC = 180°이므로

 $\angle QAD + \angle ADQ = 90^{\circ}$

 $\triangle AQD$ $\circ ||A| \angle AQD = (180 - 90)^{\circ} = 90^{\circ}$

마찬가지로 $\angle QRO = \angle ROP = \angle OPQ = 90^{\circ}$:. 직사각형

 ${f 28}.$ 사각형 ABCD 에서 $\it \angle A$ 와 $\it \angle B$ 의 이등분선의 교점을 P , $\it \angle C$ 와 $\it \angle D$ 의 이등분선의 교점을 Q 라 할 때, $\angle APB + \angle DQC$ 의 크기를 구하여라.



① 90°

② 150°

③180°

④ 210°

⑤ 240°

 $\angle {\rm PAB} \, = \, a, \ \angle {\rm PBA} \, = \, b, \ \angle {\rm DCQ} \, = \, c, \ \angle {\rm CDQ} \, = \, d$ 라 하면,

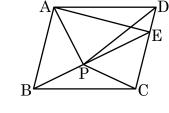
해설

□ABCD 에서 $2a + 2b + 2c + 2d = 360^{\circ}$: $a + b + c + d = 180^{\circ}$

 \triangle ABP 와 \triangle DQC 에서 $a+b+\angle {\rm APB}+c+d+\angle {\rm DQC}=360^{\circ}$

 $\therefore \angle APB + \angle DQC = 180^{\circ}$

29. 다음 그림과 같은 평행사변형 ABCD에서 $\overline{BP}:\overline{PE}=3:4$ 이고, $\Delta DPC=100 cm^2$ 일 때, ΔABP 의 넓이는?



① 30cm² ④ 70cm² ② 40cm^2 ③ 75cm^2

 360cm^2

평행사변형 ABCD의 내부에 한 점 P를 잡을 때,

 $\triangle ABP + \triangle DPC = \frac{1}{2} \Box ABCD \cdots \bigcirc$

또한, CD 위의 한 점 E를 잡을 때,

 $\triangle ABE = \frac{1}{2} \square ABCD \cdots \bigcirc$

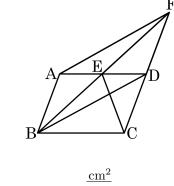
ე, ⓒ에 의해 ΔABP + ΔDPC = ΔABE이고, ΔABE = ΔABP + ΔAPE이므로

 $\triangle APE = \triangle DPC = 100(cm^2)$

| BP : PE = 3 : 4에서 △ABP : △APE = 3 : 4이므로 △ABP : 100 = 3 : 4

 $\therefore \triangle ABP = 75(cm^2)$

 ${f 30.}$ 다음 그림과 같은 평행사변형 ${f ABCD}$ 에서 꼭지점 ${f B}$ 를 지나는 직선 이 $\overline{\mathrm{AD}}$ 와 만나는 점을 E, $\overline{\mathrm{DC}}$ 의 연장선과 만나는 점을 F라고 한다. $\Delta {
m FEC} = 30\,{
m cm}^2,~\Delta {
m EDF} = 12\,{
m cm}^2$ 일 때, $\Delta {
m FEA}$ 의 넓이를 구하여라.



▷ 정답: 18 cm²

▶ 답:

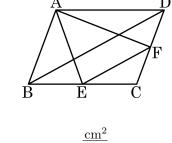
 $\triangle ADF = \triangle BDF$ 이므로

해설

 $\triangle \mathrm{FEA} = \triangle \mathrm{BED} = \triangle \mathrm{ECD}$ $= \triangle \mathrm{FEC} - \triangle \mathrm{EDF}$

 $=30-12=18 \, (\mathrm{cm}^2)$

31. 평행사변형 ABCD에서 $\overline{\rm EF}//\overline{\rm BD}$ 이다. $\triangle {\rm ABE}=15\,{\rm cm^2}\,{\rm 2}$ 때, $\triangle {\rm AFD}$ 의 넓이를 구하여라.

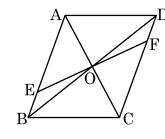


> 정답: 15<u>cm²</u>

▶ 답:

 \overline{DE} 와 \overline{BF} 를 그으면 $\triangle ABE = \triangle DBE = \triangle DBF = \triangle DAF$

 $oldsymbol{32}$. 다음 그림과 같은 평행사변형 ABCD 에서 점 O 는 두 대각선의 교점 이다. $\overline{AE}:\overline{EB}=3:1$ 이고 $\triangle AEO$ 의 넓이가 18 일 때, 평행사변형 ABCD 의 넓이는?



① 6 ② 18 ③ 24 ④ 48

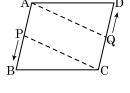
(5) 96

ΔAOE 와 ΔBEO 에서 높이는 같고 밑변이 3:1 이므로 $\Delta AOE:$

 $\triangle BEO = 3:1$ $\therefore \triangle BEO = \frac{1}{3} \triangle AEO = 6$

 $\triangle AOB = 6 + 18 = 24$ \therefore $\square ABCD = 4 \times \triangle AOB = 24 \times 4 = 96$ 이다.

 $\overline{\mathbf{AB}} = 100\,\mathrm{m}$ 인 평행사변형 ABCD 를 점 P 는 A 에서 B 까지 매초 $5\,\mathrm{m}$ 의 속도로, 점 Q 는 $7 \,\mathrm{m}$ 의 속도로 C 에서 D 로 이동하고 있다. P 가 A 를 출발한 4 초 후에 Q 가 점 C 를 출 발한다면 □APCQ가 평행사변형이 되는 것은 \mathbf{Q} 가 출발한 지 몇 초 후인가?



① 5 초

② 8 초

③10 초

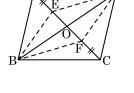
④ 12 초 ⑤ 15 초

$\square \mathrm{APCQ}$ 가 평행사변형이 되려면 $\overline{\mathrm{AP}} = \overline{\mathrm{CQ}}$ 가 되어야 하므로

해설

Q 가 이동한 시간을 x (초)라 하면 P 가 이동한 시간은 x+4(초)이다. $\overline{\mathrm{AP}} = 5(x+4), \ \overline{\mathrm{CQ}} = 7x, \ 5(x+4) = 7x$ ∴ x = 10 (초)이다.

34. 다음 그림과 같이 평행사변형 ABCD 의 대각 선 ĀC 위에 ĀE = CF 가 되도록 두 점 E, F 를 잡으면, □BEDF 는 평행사변형이다. 이 것을 증명할 때, 사용되는 평행사변형이 되는 조건은? (단, 삼각형의 합동조건은 사용하지 않는다.)



- 두 쌍의 대변이 각각 평행하다.
 두 쌍의 대변의 길이가 각각 같다.
- ③ 두 쌍의 대각의 크기가 각각 같다.
- ④ 두 대각선이 서로 다른 것을 이등분한다.
- ⑤ 한 쌍의 대변이 평행하고, 그 길이가 같다.

$\square ABCD$ 는 평행사변형이므로 $\overline{AO} = \overline{CO}$ 이므로

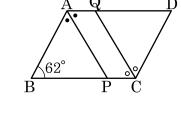
 $\overline{\mathrm{EO}} = \overline{\mathrm{AO}} - \overline{\mathrm{AE}} = \overline{\mathrm{CO}} - \overline{\mathrm{FC}} = \overline{\mathrm{FO}}$, $\overline{\mathrm{BO}} = \overline{\mathrm{DO}}$ 이다.

- 35. 다음 그림과 같이 평행사변형 ABCD 의 각 변의 중점을 P, Q, R, S 라고 할 때, □PQRS 는 어떤 도형이 되는가?
 ① 정사각형
 ② 마름모
- P R R
- ③ 직사각형
- ④ 평행사변형
- ⑤ 사다리꼴

해설

두 쌍의 대변의 길이가 각각 같으므로 평행사변형이다.

36. 다음 평행사변형ABCD 에서 \overline{AP} , \overline{CQ} 는 각각 $\angle A$, $\angle C$ 의 이등분선이 고 $\angle ABP=62$ ° 일 때, $\angle APC$ 의 크기는?

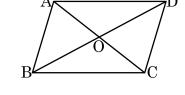


⑤ 124°

① 62° ② 59° ③ 118° ④ 121°

해설

∠ABP = 62°이므로 ∠BAP = (180° - 62°) ÷ 2 = 59° 따라서 ∠APC = 62° + 59° = 121° 37. 다음 조건을 만족하는 □ABCD 중에서 평행사변형인 것을 모두 고르 면? (정답 2 개)



- ① $\angle A = 50^{\circ}, \ \angle B = 130^{\circ}, \ \angle C = 50^{\circ}$ \bigcirc $\overline{AB}//\overline{BC}$, $\overline{AB}//\overline{DC}$
- $\overline{\text{AB}} = \overline{\text{DC}}, \ \overline{\text{AD}} = \overline{\text{BC}}$

① $\angle A=\angle C=50^\circ, \angle B=\angle D=130^\circ$ 두 쌍의 대각의 크기가

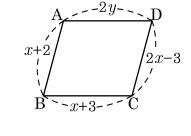
같으므로 평행사변형이다. ④ 두 쌍의 대변의 길이가 각각 같으므로 평행사변형이다.

38. 다음 중 평행사변형이 되지 <u>않는</u> 것은?

- ① 두 쌍의 대변이 각각 평행한 사각형
- ② 두 쌍의 대각이 각각 같은 사각형
- ③ 두 대각선의 길이가 같은 사각형은 사다리꼴도 해당될 수 있다. ④ 두 대각선이 서로 다른 것을 이등분하는 사각형
- ⑤ 한 쌍의 대변이 평행하고 길이가 같은 사각형
- © 0 0 1 110 1 0 0 1 1 2 1 1 EC 1 1 0

③ 은 사다리꼴도 해당될 수 있으므로 평행사변형이 될 수 없다.

39. 다음 그림과 같은 \square ABCD가 평행사변형이 되도록 하는 x, y의 값은?



▶ 답:

▶ 답:

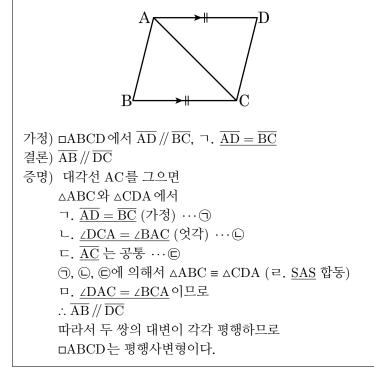
 ▷ 정답: x = 5

▷ 정답: y = 4

x + 2 = 2x - 3 x = 5,

2y = x + 3 = 8 에서 y = 4

40. 다음은 '한 쌍의 대변이 평행하고 그 길이가 같은 사각형은 평행사 변형이다.'를 증명하는 과정이다. 밑줄 친 부분 중 <u>틀린</u> 곳을 모두고르면?



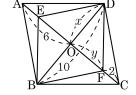
해설

②L ③ □ ④ =

3 🗆

① ¬

- **41.** 다음 평행사변형 ABCD 에서 x + y의 값
 - ① 3 ② 5 ③ 7 ⑤ 11

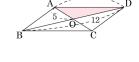


해설

평행사변형의 두 대각선은 서로 다른 대각선을 이등분한다.

 $x = \frac{10}{2} = 5$ 이고 2 + y = 6, y = 4이다. $\therefore x + y = 5 + 4 = 9$

42. 다음 그림과 같은 평행사변형 ABCD에서 $\overline{\mathrm{AD}}=8,\ \overline{\mathrm{AO}}=5,\ \overline{\mathrm{BD}}=12$ 일 때, △OAD의 둘레의 길이는?

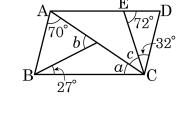


① 15 ② 16 ③ 17 ④ 18

 $\overline{\mathrm{OB}} = \overline{\mathrm{OD}} = 6$ 이므로 $\triangle \mathrm{OAD} = 5 + 6 + 8 = 19$ 이다.

해설

43. 다음 그림의 평행사변형 ABCD 에서 $\angle a + \angle b + \angle c$ 의 크기를 구하여라.



➢ 정답 : 133 º

▶ 답:

 $\angle BAC = \angle ACD$ (엇각), $\angle c = 70^{\circ} - 32^{\circ} = 38^{\circ}$

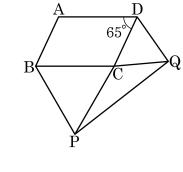
해설

 $\angle EDC = 180^{\circ} - 72^{\circ} - 32^{\circ} = 76^{\circ} = \angle ABC$ $\angle a = 180^{\circ} - 70^{\circ} - 76^{\circ} = 34^{\circ}$

 $\angle b = \angle a + 27^\circ = 34^\circ + 27^\circ = 61^\circ$ (삼각형의 한 외각의 크기는

이웃하지 않은 두 각의 크기의 합과 같다.) $\therefore \ \angle a + \angle b + \angle c = 34^{\circ} + 61^{\circ} + 38^{\circ} = 133^{\circ}$

44. 다음 그림의 평행사변형 ABCD 에 대하여 Δ BPC 와 Δ DCQ 는 각각 정삼각형이다. $\angle ADC = 65\,^{\circ}$ 일 때, $\angle PCQ$ 의 크기는 ?

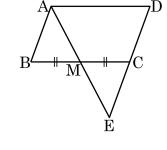


(4) 125° (5) 130°

① 110° ② 115° ③ 120°

 $\angle DCB = 180 \degree - 65 \degree = 115 \degree$ $\angle BCP = \angle DCQ = 60^{\circ}$ ∴ ∠PCQ = 360 ° − (115 ° + 60 ° + 60 °) = 360 ° − 235 ° $=125\,^{\circ}$

45. 다음 평행사변형 ABCD 에서 점 M은 \overline{BC} 의 중점이다. $\overline{AB}=8$ cm 일 때, \overline{DE} 의 길이를 구하여라.



 $\underline{\mathrm{cm}}$

▷ 정답: 16 <u>cm</u>

▶ 답:

해설

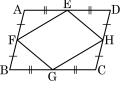
 $\overline{AB}//\overline{DE}$ 이므로 $\angle BAM = \angle MEC$, $\angle ABM = \angle MCE$

 $\overline{\mathrm{BM}} = \overline{\mathrm{CM}}$

 $\triangle ABM \equiv \triangle ECM(ASA \overline{0} + \overline{S})$ $\overline{AB} = \overline{DC} = \overline{CE} = 8cm$

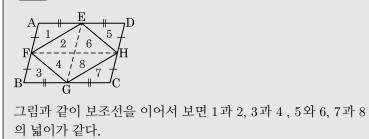
 $\therefore \overline{\mathrm{DE}} = 16\mathrm{cm}$

46. 다음 그림의 □ABCD 는 평행사변형이다. 각 변의 중점 E, F, G, H 를 연결하여 만든 □EFGH 의 넓이가 24 일 때, □ABCD 의 넓 이를 구하여라.



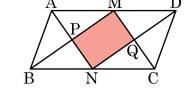
▶ 답:

▷ 정답: 48



 $\therefore \Box ABCD = 2 \times 24 = 48$

47. 다음 그림의 사각형 ABCD 에서 평행사변형 ABCD 에서 $\overline{AD}=2\overline{AB}$ 이고, \overline{AD} 와 \overline{BC} 의 중점을 각각 M, N 이라 할 때, 색칠한 사각형은 어떤 사각형인지 구하여라.



이 되므로 $\overline{AP}=\overline{PN}=\overline{MQ}=\overline{QC}$, $\overline{BP}=\overline{PM}=\overline{NQ}=\overline{QD}$ 따라서 두 쌍의 대변의 길이가 각각 같으므로 $\square PMQN$ 은 $\square \square \square \square$ 이다.

 $\overline{\mathrm{MN}}$ 을 연결하면 $\square\mathrm{ABNM}$ 과 $\square\mathrm{MNCD}$ 는 합동인 평행사변형

➢ 정답: 평행사변형

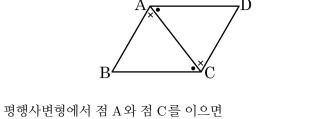
▶ 답:

 $\overline{
m MN}$ 을 연결하면 $\Box
m ABNM$ 과 $\Box
m MNCD$ 는 합동인 평행사변형이

해설

되므로 $\overline{AP}=\overline{PN}=\overline{MQ}=\overline{QC}$, $\overline{BP}=\overline{PM}=\overline{NQ}=\overline{QD}$ 따라서 두 쌍의 대변의 길이가 각각 같으므로 $\square PMQN$ 은 평행사변형이다.

48. 다음은 평행사변형의 성질을 증명하는 과정이다. 어떤 성질을 증명한 것인가?



△ABC와 △CDA에서 ĀC는 공통····⑤

AB // CD이므로 ∠BAC = ∠DCA···⑤

AD // BC이므로 ∠BCA = ∠DAC···⑤

⑤, ⓒ, ⓒ에 의해서 △ABC ≡ △CDA(ASA 합동)

∴ ∠A = ∠C, ∠B = ∠D

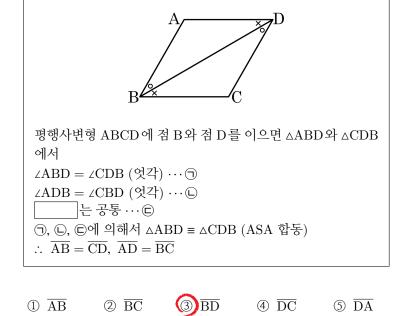
- ② 평행사변형에서 두 쌍의 대변의 길이는 각각 같다.

① 평행사변형에서 두 쌍의 엇각의 크기가 각각 같다.

- ③ 평행사변형에서 두 쌍의 대각의 크기가 각각 같다. ④ 평행사변형에서 두 쌍의 대변이 각각 평행하다.
- ⑤ 평행사변형에서 두 대각선은 서로 다른 것을 이등분한다.
- 해설

평행사변형에서 두 쌍의 대각의 크기가 각각 같음을 증명하는 과정이다.

49. 다음은 '평행사변형에서 두 쌍의 대변의 길이는 각각 같다.' 를 증명한 것이다. □ 안에 들어갈 말로 알맞은 것은?



 $\angle ABD = \angle CDB$ (엇각), $\angle ADB = \angle CBD$ (엇각), \overline{BD} 는 공통이 므로

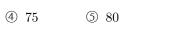
△ABD와 △CDB에서

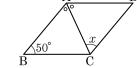
해설

 \bigcirc \overline{AB} \bigcirc \overline{BC}

 $\triangle ABD \equiv \triangle CDB (ASA 합동)$ 이다.

50. 평행사변형 ABCD 에서 $\angle x = ($)° 이다. () 안에 알맞은 수를 구하여라.





$$\angle x = \frac{1}{2} \angle A \ ()$$
건가)
 $\angle A = 130^{\circ}$

$$\therefore \angle x = 65^{\circ}$$