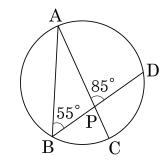

같이 벽에 걸쳐 있다. 사다리와 지면이 이루는 각의 크기가 62°일 때, 지면으로부터 사다리가 닿는 곳까지의 높이를 반올림하여 소수 첫째 자리까지 구하여라. (단, sin 62°= 0.8829, cos 62°= 0.4695, tan 62°= 1.8807)

길이가 10 m 인 사다리가 다음 그림과

답:▷ 정답: 8.8m


1.

 $\underline{\mathbf{m}}$

 $(\stackrel{\iota}{\Xi}$ 이) = $10 \sin 62$ ° = $10 \times 0.8829 = 8.8$ (m)

해설

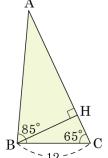
2. 다음 그림에서 두 현 AC, BD 의 교점은 P 이고, 5.0ptBC 의 길이가 6π 일 때, 이 원의 원주의 길이는?

① 36π ② 40π ③ 44π ④ 48π ⑤ 52π

∠BAP = 85° - 55° = 30° 5.0ptBC 의 원주각은 30° 이다.

30° : 180° = 6π : (원주의 길이) ∴ (원주의 길이) = 36π

- 3. 다음 중 삼각비의 값의 대소 관계로 옳지 <u>않은</u> 것을 모두 고르면?
- $3\sin 40^{\circ} > \cos 20^{\circ}$
- $(3) \sin 75^{\circ} > \cos 75^{\circ}$

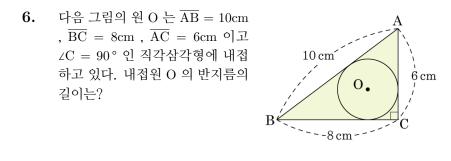

해설 3 0°

- ③ 0° ≤ x < 45° 인 범위에서는, sin x < cos x 이므로 ∴ sin 40° < cos 20°
- ④ $0^{\circ} \le x \le 90^{\circ}$ 인 범위에서는 x 의 값이 증가하면 $\cos x$ 의
- 값은 1 에서 0 까지 감소한다. ∴ cos 10° > cos 80°

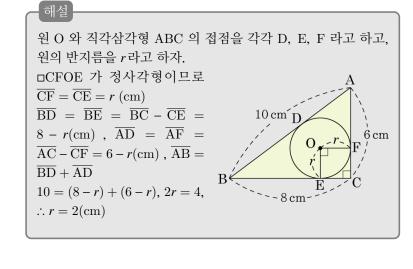
다음 그림과 같은 $\triangle ABC$ 에서 $\angle B=85\,^{\circ},\ \angle C=$ 4. $65\,^\circ,\,\overline{\mathrm{BC}}=12$ 일 때, $\overline{\mathrm{AB}}$ 의 길이를 소수점 아래 셋째 자리까지 구하면? (단, $\sin 65\,^\circ=0.9063)$ ③ 22.482

221.751 ① 20.153

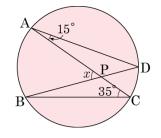
4 23.581 ⑤ 24.372


 $\angle A = 180^{\circ} - (85^{\circ} + 65^{\circ}) = 30^{\circ}$

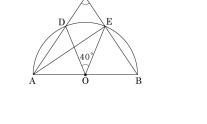
 $\overline{BH} = 12\sin 65^{\circ} = 10.8756$


 $\therefore \overline{AB} = \frac{\overline{BH}}{\sin 30^{\circ}} = 10.8756 \times 2 = 21.7512$

- 다음 그림의 삼각형의 넓이를 옳게 구한 **5**.
 - \bigcirc 24cm²
- $24\sqrt{2}$ cm²
- 48cm^2
- $\boxed{3}24\sqrt{3}\text{cm}^2$ ⑤ $48\sqrt{2}$ cm²


 $\Delta ABC = \frac{1}{2} \times \overline{AC} \times \overline{BC} \times \sin(180^{\circ} - 120^{\circ})$ $= \frac{1}{2} \times 12 \times 8 \times \frac{\sqrt{3}}{2}$ $= 24\sqrt{3}(\text{ cm}^{2})$

7. 다음 그림에서 $\angle x$ 의 크기를 구하여라.


➢ 정답: 50 º

▶ 답:

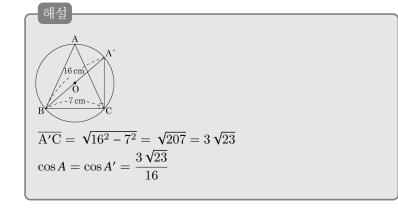
5.0ptCD 의 원주각 ∠CAD = ∠DBC = 15°

∴ $\triangle BPC$ 에서 $\angle x = 15^{\circ} + 35^{\circ} = 50^{\circ}$

다음 그림에서 \overline{AB} 는 원 O 의 지름이고, 점 P 는 \overline{AD} 와 \overline{BE} 의 연장선의 교점이다. $\angle APE$ 의 크기는? 8.

① 50° ② 60°

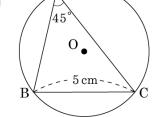
④ 80°


⑤ 90°

 $\angle \mathrm{DAE} = \frac{1}{2} \angle \mathrm{DOE} = \frac{1}{2} \times 40^{\circ} = 20^{\circ}$ ∠AEB = 90° 이므로 ∠AEP = 90° 이다. 따라서 ∠APE = 90° - 20° = 70° 이다.

9. 다음 그림과 같이 $\overline{BC}=7\mathrm{cm}$ 인 ΔABC 에 외접하는 원 O 의 반지름의 길이가 $8\mathrm{cm}$ 일 때, $\cos A$ 의 값은?

- $\frac{3}{16}$

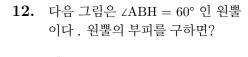

10. sin² 30°×tan² 60° ÷ cos² 60°의 값을 구하여라.

답:

➢ 정답: 3

- 11. 다음 그림과 같이 $\angle A = 45^{\circ}$, $\overline{BC} = 5 \mathrm{cm}$ 인 $\triangle ABC$ 의 외접원 O 의 반지름의 길이 는?

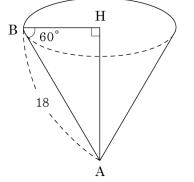
 - ① $\frac{3\sqrt{2}}{2}$ cm ② $3\sqrt{2}$ cm ② $5\sqrt{2}$ cm ④ $5\sqrt{2}$ cm ⑤ $\frac{7\sqrt{2}}{2}$ cm


그림과 같이 원 O 의 지름 A'B 를 그으면 $5.0 \mathrm{pt}$ $\stackrel{\frown}{\mathrm{BC}}$ 에 대한 원

주각의 크기는 서로 같으므로 $\angle BA'C = \angle BAC = 45^{\circ}$

 $\sin 45^\circ = \frac{5}{\overline{A'B}} = \frac{1}{\sqrt{2}} \quad \therefore \overline{A'B} = 5\sqrt{2}(cm)$

$$\sin 45^\circ = \frac{5}{\overline{A'B}} = \frac{1}{\sqrt{2}}$$
 $\therefore \overline{A'B} = 5\sqrt{2} \text{(cm)}$
따라서 외접원 O 의 반지름 길이는 $\frac{5\sqrt{2}}{2} \text{ cm}$ 이다.

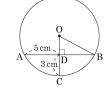

 $\bigcirc 243\sqrt{3}\pi$

② $244\sqrt{3}\pi$

 $3 245 \sqrt{3}\pi$

④ $243\sqrt{5}\pi$

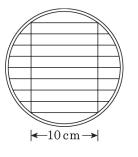
⑤ $246\sqrt{5}\pi$



 $\cos 60^{\circ} = \frac{\overline{BH}}{18} : \overline{BH} = 18 \cos 60^{\circ} = 18 \times \frac{1}{2} = 9$ $\tan 60^{\circ} = \frac{\overline{AH}}{9} : \overline{AH} = 9 \tan 60^{\circ} = 9 \sqrt{3}$

(원뿔의 부피) = $9 \times 9 \times \pi \times 9\sqrt{3} \times \frac{1}{3} = 243\sqrt{3}\pi$

13. 다음 그림에서 $\overline{AB}\bot\overline{OC}$, $\overline{AD}=5\mathrm{cm}$, $\overline{CD}=3\mathrm{cm}$ 일 때, \overline{OB} 의 길이를 구하여라.


▶ 답:

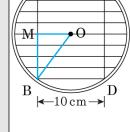
 $\underline{\mathrm{cm}}$

ightharpoonup 정답: $rac{17}{3}$ $m \underline{cm}$

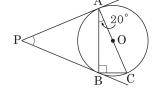
 $egin{aligned} \overline{\mathrm{OB}} &= x \ \mathrm{라 } \ \mathrm{\ddot{O}D} = x - 3 \ \mathrm{
hol} \mathrm{Z} \ \overline{\mathrm{AD}} &= \overline{\mathrm{DB}} = 5 \ \mathrm{(cm)} \ \mathrm{
hol} \mathrm{H}. \ \left(\because \ \overline{\mathrm{AB}} \bot \overline{\mathrm{OD}} \right) \end{aligned}$ 따라서, $x^2 = 5^2 + (x - 3)^2$ $x^2 = 25 + x^2 - 6x + 9$ 6x = 34 $\therefore x = \frac{17}{3}$ (cm)

14. 미영이는 야영을 가서 다음 그림과 같은 원 모양의 석쇠로 고기를 구웠다. 굵은 두 철사 는 평행하고 길이가 24 cm 로 같았으며, 두 철사 사이의 간격은 $10\,\mathrm{cm}$ 였다. 미영이가 사용한 석쇠의 반지름의 길이를 구하여라.

▷ 정답: 13 cm


 $\underline{\mathrm{cm}}$

▶ 답:

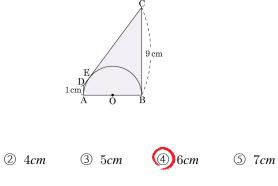

두 철사가 원 모양의 석쇠와 만나는 네

개의 점을 각각 A, B, C, D 라 하고, 석 쇠의 중심을 O, \overline{AB} 의 중점을 M 이라 할 때, $\overline{\mathrm{OM}} = 5\,\mathrm{cm}$, $\overline{\mathrm{MB}} = \overline{\mathrm{AB}} \times \frac{1}{2} =$ $24 \times \frac{1}{2} = 12$ (cm) 이다. 석쇠의 반지름의 길이는 ΔOMB 가 직

각삼각형이므로 $\overline{\mathrm{OB}} = \sqrt{5^2 + 12^2} =$ $\sqrt{169} = 13$ (cm) 이다.

15. 다음 그림에서 PA, PB는 각각 점 A, B 를 접점으로 하는 원 O 의 접선이고 AC는 지름이다. ∠BAC = 20°일 때, ∠P = □° 의 알맞은 수를 구하여라.

 ► 답:

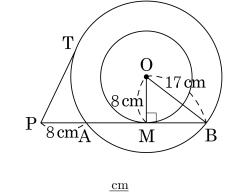

 ▷ 정답:
 40

 $\overline{\mathrm{BO}}$ 를 그으면 $\Delta\mathrm{OAB}$ 는 이등변삼각형이므로 $\Delta\mathrm{OBA} = 20\,^\circ$

이다. 또한 ∠PAO = ∠PBO = 90°이므로 ∠PAB = ∠PBA = 90° - 20° = 70°이다.

 $\angle PAB = \angle PBA = 90^{\circ} - 20^{\circ} = 70^{\circ}$ 이다. $\angle P = 90^{\circ} - \angle PAB - \angle PBA = 180^{\circ} - 70^{\circ} - 70^{\circ} = 40^{\circ}$ 이다.

16. 다음 그림과 같이 \overline{AB} 를 지름으로 하는 반원 O 에서 세 접선 AD, BC, CD 가 있을 때, $\overline{AD}=1\,\mathrm{cm}$, $\overline{BC}=9\,\mathrm{cm}$ 이다. 원 O 의 지름의 길이는?

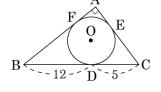

해설

점 D 에서 \overline{AB} 와 평행한 선을 그어 \overline{BC} 와 만난 점을 H 라 하면

1 3cm

 $\overline{CH} = 8(cm), \overline{CD} = \overline{CE} + \overline{DE} = \overline{CB} + \overline{AD} = 9 + 1 = 10(cm)$ $\therefore \overline{AB} = \overline{DH} = \sqrt{10^2 - 8^2} = 6(cm)$

17. 다음 그림과 같이 두 원이 동심원을 이루고 $\overline{PA}=8\,\mathrm{cm},\,\overline{OM}=8\,\mathrm{cm},$ $\overline{OB}=17\,\mathrm{cm}$ 일 때, 큰 원의 접선 \overline{PT} 의 길이를 구하여라.



ightharpoonup 정답: $4\sqrt{19}$ cm

답:

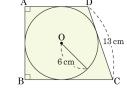
 $\overline{\mathrm{BM}} = 15 = \overline{\mathrm{AM}}$ 이므로 $\overline{\mathrm{PT}}^2 = 8 \times (8 + 15 + 15) = 304$ $\overline{\mathrm{PT}} = 4\sqrt{19} (\,\mathrm{cm})$

18. 다음 그림에서 원 O 는 직각삼각형 ABC 에 내접하는 원이고 점 D, E, F 는 접점이다. 원 O 의 반지름의 길이를 구하여라.

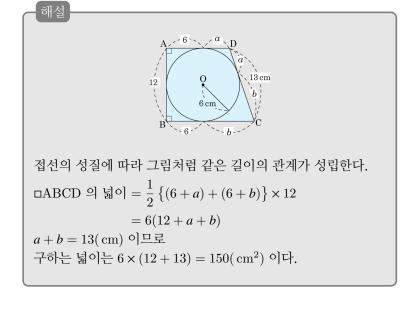
답:

▷ 정답: 3

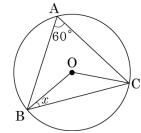
 $\overline{\mathrm{AF}} = \overline{\mathrm{AE}} = r$ 라고 하면


해설

BF = 12, $\overline{\text{CE}} = 5$ 이므로 $\triangle \text{ABC}$ 에서 $(12+5)^2 = (12+r)^2 + (5+r)^2$ $289 = 144 + 24r + r^2 + 25 + 10r + r^2$ $2r^2 + 34r - 120 = 0$ $r^2 + 17r - 60 = 0$ (r+20)(r-3) = 0

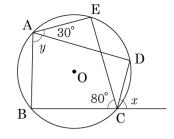

(r+20)(r-3) = 0 $r = -20 \, \text{\mathref{E}} \, t = 3$

따라서 r > 0 이므로 r = 3 이다.


19. 다음 그림과 같이 반지름의 길이가 6 cm 인 원 O 에 외접하는 사각형 ABCD 의 넓이는?

- ① 60cm² ④ 100cm²
- \bigcirc 64cm²
- $3 72 \text{cm}^2$
- \bigcirc 150cm²

20. 다음 그림에 $\angle BAC = 60$ °일 때, $\angle OBC$ 의 크기를 구하면?


①30° 2 40° 3 50° 4 60° 5 70°

중심각= 2× 원주각

 $\angle BOC = 2 \times 60^{\circ} = 120^{\circ}$

△BOC 는 이등변삼각형

21. 다음 그림에서 x, y의 값을 구하여라.

답: > 정답: x = 70_°

> **정답**: y = 70<u>°</u>

▶ 답:

사각형 ABCE가 원에 내접하므로 $y^\circ + 30^\circ + 80^\circ = 180^\circ$::

해설

 $y^{\circ} = 70^{\circ} x^{\circ} = 70^{\circ}$

22. 다음 그림의 부채꼴 APR는 반지름의 길이가 1 이고 중심각의 크기가 90° 이다. 빗금친 부분의 넓이는?

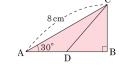
- ① $\frac{\sqrt{3}}{8}$ ② $\frac{\sqrt{3}}{4}$ ③ $\frac{3\sqrt{3}}{8}$ ④ $\frac{\sqrt{3}}{2}$ ⑤ $\frac{5\sqrt{3}}{8}$

 $\triangle ABC$ 에서 $\overline{AC}=1, \angle A=60^\circ$ 이므로 $\overline{AB}=\cos 60^\circ=rac{1}{2}$, $\overline{BC} = \sin 60^{\circ} = \frac{\sqrt{3}}{2}$

 $\triangle APQ$ 에서 $\overline{AP}=1, \angle A=60^\circ$ 이므로 $\overline{AQ}=\frac{1}{\cos 60^\circ}=\frac{1}{\frac{1}{2}}=2$, $\overline{PQ}=\tan 60^\circ=\sqrt{3}$ (빗금친 부분의 넓이)= $\triangle APQ$ 의 넓이- $\triangle ABC$ 의 넓이

 $\triangle APQ$ 의 넓이= $\frac{1}{2} \times (1 \times \sqrt{3}) = \frac{\sqrt{3}}{2}$

 $\triangle ABC$ 의 넓이 $= \frac{1}{2} \times \left(\frac{1}{2} \times \frac{\sqrt{3}}{2}\right) = \frac{\sqrt{3}}{8}$

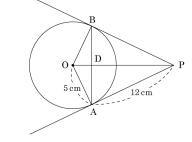

 \therefore (빗급친 부분의 넓이)= $\frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{8} = \frac{3\sqrt{3}}{8}$

23. x 에 관한 이차방정식 $2x^2-11x+a=0$ 의 한 근이 $\sin 90^\circ+\cos 0^\circ$ 일 때, a 의 값을 구하면?

- ① 14 ② 13 ③ 12 ④ 11 ⑤ 10

이차방정식 $2x^2-11x+a=0$ 에 x=2 를 대입하면, $2\times 2^2 11 \times 2 + a = 0$ 8 - 22 + a = 0, a = 14

 ${f 24}$. 다음 그림에서 점D 가 ${f AB}$ 의 중점일 때, ${f CD}$ 의 길이는?


① $\sqrt{3}$ cm $\bigcirc 2\sqrt{7}$ cm $\bigcirc 2\sqrt{11}$ cm

② $2\sqrt{2}$ cm ③ $2\sqrt{3}$ cm

해설

 $\angle {\rm A}=30^{\circ}$ 이므로 $\overline{\rm AB}=8 imes\cos30^{\circ}=4\sqrt{3}$ 이다. $\overline{\mathrm{BC}} = 8 \times \sin 30^{\circ} = 4$ 이므로 $\Delta\mathrm{CDB}$ 에 피타고라스 정리를 적용하면 $\overline{\text{CD}} = \sqrt{(2\sqrt{3})^2 + 4^2} = \sqrt{28} = 2\sqrt{7}$

 ${f 25}$. 다음 그림에서 두 직선 PA, PB 는 반지름의 길이가 $5{
m cm}$ 인 원 O 의 접선이고 점 A, B 는 접점이다. $\overline{PA}=12\mathrm{cm}$ 일 때, \overline{AB} 의 길이는?

- ① 24cm $4 \frac{124}{5}$ cm
- ② $\frac{192}{2}$ cm ⑤ 25cm

또한, \overline{AB} $\bot\overline{PO}$ 이므로 $\overline{\mathrm{PA}} \times \overline{\mathrm{AO}} = \overline{\mathrm{PO}} \times \overline{\mathrm{AD}} \Rightarrow 12 \times 5 = 13 \times \overline{\mathrm{AD}} \ \therefore \overline{\mathrm{AD}} = \frac{60}{13} \mathrm{cm}$

삼각형 PAO 는 직각삼각형이므로 $\overline{PO}=13\mathrm{cm}$ 이다.

따라서 수선 OD 는 현 AB 를 이등분하므로 $\overline{AB} = 2\overline{AD} =$ $\frac{120}{13}$ cm 이다.