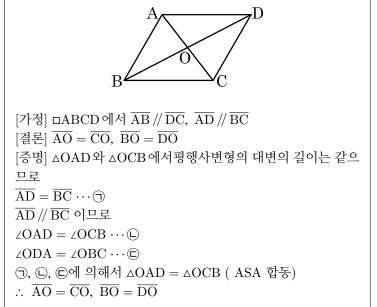
다음 그림과 같은 평행사변형 ABCD 에서 ∠x 1. 의 크기는?

> ① 30° ② 35° 345°

4)65° ⑤ 100°

해설 $\overline{\mathrm{AB}}\,/\!/\,\overline{\mathrm{CD}}$ 이므로 $\angle x=65\,^{\circ}$ 이다. **2.** 다음은 '평행사변형에서 두 대각선은 서로 다른 것을 이등분한다.' 를 증명한 것이다. ∠OAD = ∠OCB, ∠ODA = ∠OBC 인 이유는?



④ 엇각

⑤ 평각

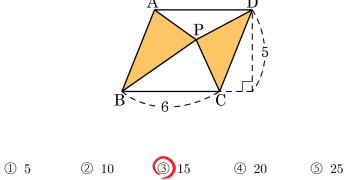
① 맞꼭지각 ② 직각

③ 동위각

해설

평행선에서의 엇각의 성질로 ∠OAD = ∠OCB, ∠ODA = ∠OBC 이다.

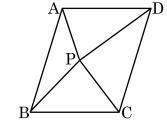
 ${f 3.}$ 다음 그림과 같이 평행사변형 내부에 한 점 ${f P}$ 를 잡았을 때, 어두운 부분의 넓이의 합은?



내부의 한 점 P에 대하여 $\frac{1}{2}$ \square ABCD = \triangle PAB + \triangle PCD = $\triangle PAD + \triangle PBC$ 이다. 평행사변형의 넓이가 $5 \times 6 = 30$ 이므로

 $\triangle PAB + \triangle PCD = \frac{1}{2} \times 30 = 15$

다음 그림과 같이 넓이가 40cm^2 인 평행사변형 내부에 한 점 P를 잡을 때, ΔPBC 의 넓이가 10cm^2 이다. ΔPAD 의 넓이를 $a \text{cm}^2$ 라고 할 때, **4.** a의 값을 구하여라.



▶ 답:

▷ 정답: 10

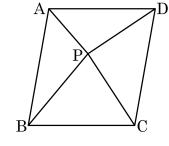
내부의 한 점 P에 대하여 $\frac{1}{2}$ \square ABCD = \triangle PAB + \triangle PCD = \triangle PAD + \triangle PBC 이다.

 $40 imes rac{1}{2} = 10 + \Delta PAD$ 이므로

 $\triangle PAD = 10cm^2$

 $\therefore a = 10$

 ${f 5}$. 다음 그림과 같이 넓이가 $36{
m cm}^2$ 인 평행사변형 ${
m ABCD}$ 의 내부에 한 점 P를 잡을 때, $\triangle ADP + \triangle BCP$ 의 넓이는?



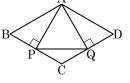
- 4 23cm^2
- 218cm^2 \bigcirc 30cm²
- $3 20 \text{cm}^2$

해설 내부의 한 점 P에 대하여 $\frac{1}{2}$ \square ABCD = \triangle PAB + \triangle PCD = \triangle ADP + \triangle BCP 이다 $\therefore 36 \times \frac{1}{2} = \triangle$ ADP + \triangle BCP = 18 (cm^2)

- **6.** 다음 중 직사각형이 <u>아닌</u> 것은?
 - ① 네 각의 크기가 모두 90° 인 사각형
 - ② 두 대각선의 길이가 같은 평행사변형
 - ③ 두 대각선의 길이가 같고, 서로 다른 것을 수직 이등분하는 사각형④ 이웃하는 두 변의 길이가 같은 평행사변형
 - ⑤ 한 각의 크기가 90° 인 평행사변형

④ 이웃하는 두 변의 길이가 같은 평행사변형은 마름모이다.

7. 마름모 ABCD 의 한 꼭짓점 A에서 $\overline{
m BC}$, $\overline{\mathrm{CD}}$ 위에 내린 수선의 발을 각각 $\mathrm{P},~\mathrm{Q}$ 라 할 때, ∠PAQ = 60° 일 때, ∠APQ = ()° B< 이다. () 안에 알맞은 수를 구하여라.



➢ 정답: 60

▶ 답:

 $\angle B = \angle D$ 이코, $\overline{AB} = \overline{AD}$,

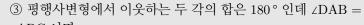
 $\angle APB = \angle AQD = 90^{\circ}$ $\triangle APB \equiv \triangle AQD \; (RHA \; 합동) \rightarrow \overline{AP} = \overline{AQ} \; 이므로 \; \triangle APQ 는$

이등변삼각형이다. $\angle \mathrm{APQ} = \frac{180^{\circ} - 60^{\circ}}{2} = 60^{\circ}$ 이다.

- 8. 다음 그림의 마름모 ABCD 가 정사각형이 되기 위한 조건을 모두 고르면? (정답 2 개)
 - ② $\angle ABD = \angle CBD$

① $\angle BAC = \angle DAC$

- \bigcirc $\overline{AO} = \overline{CO}$
- $\overline{\text{AO}} = \overline{\text{BO}}$

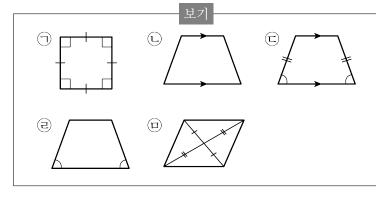


∠ABC 이면, $\angle DAB = \angle ABC = 90$ ° 가 되어 $\Box ABCD$ 는 네 변의 길이가 모두 같고, 네 내각의 크기가 모두 같으므로 정사각형이 된다.

О

- ⑤ 평행사변형에서 $\overline{AO}=\overline{CO}$, $\overline{BO}=\overline{DO}$ 인데 $\overline{AO}=\overline{BO}$ 가 되면 $\overline{AO} = \overline{BO} = \overline{CO} = \overline{DO}$ 가 되어 $\square ABCD$ 는 직사각형이 된다. 따라서 □ABCD 는 네 변의 길이가 모두 같고 네 내각의
- 크기가 모두 같으므로 정사각형이 된다.

9. 다음 중 등변사다리꼴인 것은?



⑤ ⑤, ⑥

등변사다리꼴은 밑각의 크기가 같은 사다리꼴이다.

해설

© 사다리꼴이다. ◎ 사다리꼴이라는 조건이 나타나 있지 않다.

- ◎ 두 대각선의 길이가 같지 않으므로 등변사다리꼴이 아니다.

10. 다음 그림과 같은 등변사다리꼴에서 AB = AD, ∠BDC = 90°일 때, ∠C 의 크기를 구하여라.

B

답:▷ 정답: 60°

∠ABD = ∠ADB 이고, ∠ADB = ∠DBC (엇각)

그리고 등변사다리꼴이므로 두 밑각의 크기가 같으므로 ∠ABC = ∠DCB 따라서 3∠• = 90°, ∠• = 30° 이므로 ∠C = 60°

11. 다음 설명 중 옳은 것은?

- 이웃하는 두 변의 길이가 같은 사각형은 마름모이다.
 두 대각선이 서로 다른 것을 수직 이등분하는 사각형은
- 정사각형이다. ③ 두 대각선의 길이가 같은 사각형은 직사각형이다.
- ④두 대각선이 서로 수직인 직사각형은 정사각형이다.
- ⑤ 등변사다리꼴은 평행사변형이다.

④ 직사각형에서 두 대각선이 서로 수직이면 정사각형이 된다.

해설

12. 다음 조건에 알맞은 사각형을 모두 구하면?

'대각선이 서로 다른 것을 이등분한다.'

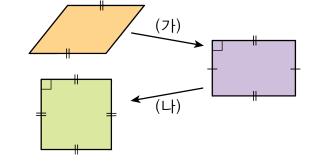
- ① 평행사변형, 등변사다리꼴, 마름모, 정사각형
 ② 등변사다리꼴, 평행사변형, 마름모
- ③ 마름모, 정사각형
- ④ 평행사변형, 직사각형, 마름모, 정사각형 ⑤ 등변사다리꼴, 직사각형, 정사각형

대각선이 서로 다른 것을 이등분하는 것은 평행사변형, 직사각형,

해설

마름모, 정사각형이다.

13. 다음 그림을 보고 (개, (내) 에 들어갈 조건을 바르게 나타낸 것은?



(내: 한 내각의 크기가 90°이다.

① (개): 두 대각선이 서로 수직 이등분한다.

- ② (개: 한 내각의 크기가 90°이하이다.
- (내): 네 변의 길이가 모두 같다. ③ (개): 한 내각의 크기가 90°이다.
 - (내): 두 대각선이 서로 직교한다.
- ④ (개): 두 대각선이 서로 직교한다.(내): 두 대각선의 길이가 같다.
- ⑤ (개: 두 대각선의 길이가 같다.
- (내 : 한 내각의 크기가 90°이다.

평행사변형이 직사각형이 되려면 한 내각의 크기가 90°이거나

두 대각선의 길이가 같으면 된다. 직사각형이 정사각형이 되려면 두 대각선이 서로 직교하거나 네 변의 길이가 모두 같으면 된다.

- 14. 다음 사각형 중에서 두 대각선의 길이가 같은 사각형을 모두 고르면? (정답 2 개)
 - ① 사다리꼴 ② 평행사변형 ③ 직사각형
 - ④ 정사각형 ⑤ 마름모

대각선의 길이가 같은 사각형은 직사각형, 정사각형이다.

15. 다음 조건에 알맞은 사각형을 모두 구하면?

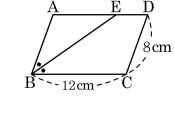
대각선이 서로 다른 것을 이등분한다.

- ① 평행사변형, 등변사다리꼴, 마름모, 정사각형② 등변사다리꼴, 평행사변형, 마름모
- ③ 평행사변형, 직사각형, 마름모, 정사각형
- ④ 등변사다리꼴, 직사각형, 정사각형
- ⑤ 마름모, 정사각형

평행사변형은 두 대각선이 서로 다른 것을 이등분한다. 직사

해설

각형, 마름모, 정사각형은 평행사변형의 성질을 가지므로 위의 성질도 가진다. 16. 다음 그림의 평행사변형 ABCD 에서 \overline{BE} 는 $\angle ABC$ 의 이등분선이 다. $\overline{BC}=12\,\mathrm{cm},\ \overline{CD}=8\,\mathrm{cm}$ 일 때, \overline{DE} 의 길이는?



① 2 cm ② 3 cm

 $34 \, \mathrm{cm}$

④ 5 cm

⑤ 6 cm

∠EBC = ∠AEB (엇각)

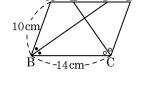
해설

즉, $\triangle ABE$ 는 이등변삼각형이므로 $\overline{AB} = \overline{AE} = 8(\text{cm})$

 $\overline{\mathrm{DE}} = \overline{\mathrm{AD}} - \overline{\mathrm{AE}} = 12 - 8 = 4 (\mathrm{cm})$

17. 다음 그림과 같은 평행사변형 ABCD 에서 $\overline{\mathrm{BF}},$ $\overline{\mathrm{CE}}$ 는 각각 $\angle \mathrm{B},$ $\angle \mathrm{C}$ 의 이등분선이다. $\overline{AB}=10\mathrm{cm},\;\overline{BC}=14\mathrm{cm}$ 일 때, \overline{EF} 의 길 이를 구하여라.

 $\underline{\mathrm{cm}}$



▷ 정답: 6cm

답:

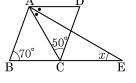
 $\overline{AF} = \overline{AB} = 10 \text{ (cm)}$

해설

 $\overline{\mathrm{CD}} = \overline{\mathrm{DE}} = 10~\mathrm{(cm)}$

 $\overline{\mathrm{AF}} + \overline{\mathrm{ED}} - \overline{\mathrm{EF}} = 14 \text{ (cm) 이므로}$ $\overline{\rm EF} = 10 + 10 - 14 = 6 \text{ (cm)}$

18. 다음 그림과 같은 평행사변형 ABCD 에서 ∠DAC 의 이등분선과 BC 의 연장선과의 교점을 E라 한다. ∠B = 70°, ∠ACD = 50°일 때, ∠x 의 크기를 구하여라.



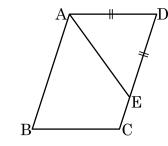
▷ 정답: 30_°

▶ 답:

 $\angle B = \angle D = 70$ ° 이므로 $\angle CAD = 60$ ° 이코 $\angle EAC = \angle AEC =$

30°이다. 따라서 ∠x = 30°이다.

19. 다음 그림과 같은 평행사변형 ABCD 에서 $\angle A: \angle B=3:2$ 일 때, $\angle AEC$ 의 크기는?(단, $\overline{AD} = \overline{DE}$)



① 98° ② 112° ③ 124°

4 126°

⑤ 132°

 $\angle A = 180^{\circ} \times \frac{3}{5} = 108^{\circ}$ $\angle B = 180^{\circ} \times \frac{3}{5} = 72^{\circ}$

$$\angle B = 180^{\circ} \times \frac{3}{5} = 7$$

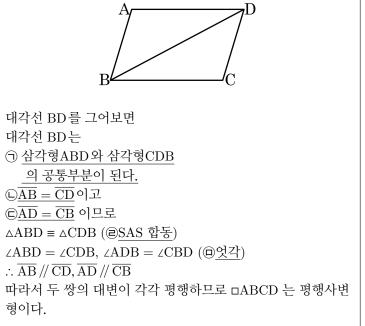
$$\angle D = \angle B = 72^{\circ}$$

$$\overline{\mathrm{AD}} = \overline{\mathrm{DE}}$$
 이므로

 $\angle DEA = (180^{\circ} - 72^{\circ}) \div 2 = 54^{\circ}$

 $\therefore \angle AEC = 180^{\circ} - 54^{\circ} = 126^{\circ}$

20. 다음 그림과 같은 □ABCD 에서 $\overline{AB} = \overline{CD}$, $\overline{AD} = \overline{CB}$ 이면 □ABCD 는 평행사변형임을 설명하는 과정이다. ⑤~⑥ 중 옳지 <u>않은</u> 것을 기호로 써라.



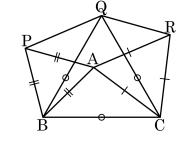
▷ 정답: ②

▶ 답:

SSS 합동

해설

21. 다음 그림은 $\triangle ABC$ 의 세 변을 각각 한 변으로 하는 정삼각형을 겹쳐 그린 것이다. 즉, $\triangle ABP$, $\triangle BCQ$, $\triangle ACR$ 은 모두 정삼각형이다. 다음 중 옳은 것을 보기에서 모두 고르면?



- \bigcirc \triangle ABC \equiv \triangle RQC
- \Box \triangle ABC = \triangle RQ

 \bigcirc $\angle QPB = 90^{\circ}$

- © $\angle PBQ = \angle ACB$ © $\overline{PQ} = \overline{RC}$
- ◎ □QPAR 는 평행사변형

④ ⑦, ₴, ₪

 $\textcircled{1} \ \textcircled{7}, \textcircled{6}, \textcircled{6}$

(5) (E), (E), (D)

2 7, 0, 8

③□, ₪

해설

$\triangle ABC$ 와 $\triangle RQC$ 에서 $\overline{AC} = \overline{RC}$,

 $\overline{\mathrm{BC}} = \overline{\mathrm{QC}}$, $\angle \mathrm{ACB} = \angle \mathrm{RCQ} (= 60^{\circ} - \angle \mathrm{QCA})$ 이므로 $\triangle \mathrm{ABC} \equiv \triangle \mathrm{RQC} \cdots$

똑같은 이유로 △ABC ≡ △PBQ

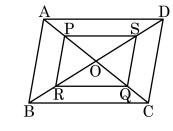
따라서 $\triangle PBQ \equiv \triangle RQC$ 이므로 $\overline{PQ} = \overline{RC} \cdots$ ②

또, □QPAR 는 평행사변형 · · · 回 (∵ ĀR = PQ, PA = QR)

① ∠QPB = 90° (근거 없음)

© ∠PBQ ≠ ∠ACB 이고, △ABC ≡ △PBQ 이다.

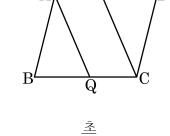
22. 다음 그림과 같은 평행사변형 ABCD 의 대각선 \overline{AC} , \overline{BD} 위에 $\overline{AP} = \overline{CQ}$, $\overline{BR} = \overline{DS}$ 를 만족하는 점P,Q,R,S 를 잡을 때, $\square PRQS$ 가 평행 사변형이 되는 조건은?



- 두 쌍의 대변의 길이가 각각 같다.
 두 쌍의 대변이 각각 평행하다.
- ③ 두 대각선이 서로 다른 것을 이등분한다.
- ④ 한 쌍의 대변이 평행하고 그 길이가 같다.
- ⑤ 두 쌍의 대각의 크기가 각각 같다.

□ABCD 는 평행사변형이므로

 $\overline{AO} = \overline{CO}, \overline{BO} = \overline{DO}$ 이다. $\overline{AP} = \overline{CQ}, \overline{BR} = \overline{DS}$ 이므로 $\therefore \overline{PO} = \overline{QO}, \overline{RO} = \overline{SO}$ 23. AD = 80cm 인 평행사변형 ABCD 에서 점 P 는 4cm/s 의 속도로 점 A 에서 점 D 로 움직이고, 점 Q 는 6cm/s 의 속도로 점 C 에서 점 B 로 움직인다. 점 P 가 움직이기 시작하고 5 초 후에 점 Q 가 움직인다면 점 P 가 움직인지 몇 초 후에 □AQCP 가 평행사변형이 되는지 구하여라.



정답: 15초

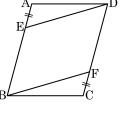
해설

▶ 답:

4x = 6(x - 5)4x = 6x - 30, 2x = 30 ∴ x = 15 $\stackrel{=}{\sim}$

 $\overline{\mathrm{AP}} = \overline{\mathrm{QC}}$ 가 될 때까지 P 가 움직인 시간을 x 라고 하면

24. 평행사변형 ABCD 의 AB, CD 위에 AE = CF 가 되도록 두 점 E, F 를 잡을 때 □BEDF 가 평행사변형이 되는 조건으로 가장 알맞은 것은?



- ① $\overline{AB}//\overline{DC}$, $\overline{ED}//\overline{DF}$
- ② $\angle EBF = \angle EDF$, $\angle BED = \angle DFB$ ③ $\overline{AD} = \overline{BC}$, $\overline{AB} = \overline{CD}$
- $\overline{AB} = \overline{CD}, \overline{AE} = \overline{CF}$
- \bigcirc \overline{BE} // \overline{DF} , \overline{BE} = \overline{DF}

사각형 ABCD 가 평행사변형이므로 $\operatorname{\overline{AB}}//\operatorname{\overline{CD}}$, $\operatorname{\overline{AB}}=\operatorname{\overline{CD}}$

해설

즉 $\overline{\rm EB}//\overline{\rm DF}$, $\overline{\rm AE}=\overline{\rm CF}$ 이므로 $\overline{\rm BE}=\overline{\rm DF}$ 이다. 따라서 한 쌍의 대변이 평행하고 그 길이가 같으므로 사각형 BFDE 는 평행사변형이다. **25.** 다음 그림에서 ABCD가 마름모일 때, x-y의 값을 구하여라.(단, 단위생략)

 $\begin{array}{c}
0 \\
65^{\circ}
\end{array}$ $\begin{array}{c}
(2y-2) \text{ cm} \\
\end{array}$

 ► 답:

 ▷ 정답:
 18

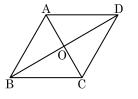
• --

해설

마름모는 두 대각선이 서로 직교하므로 ∠AOD = 90°가 된다.

 $\angle BCO = \angle DAO = 65^\circ$ 이므로 $\angle x = 25^\circ$ 가 된다. 마름모이므로 모든 변의 길이가 같다. 따라서 12 = 2y - 2, y = 7이다. $\therefore x - y = 25 - 7 = 18$

26. 다음 그림과 같은 평행사변형 ABCD 가 마 름모가 되기 위한 조건은?



 \bigcirc $\overline{AC} \bot \overline{BD}$

 \bigcirc $\angle A = \angle C$

해설

네 변의 길이가 같은 평행사변형이 마름모이고,

그 대각선은 직교한다.

27. 다음 그림의 $\square ABCD$ 는 \overline{AD} // \overline{BC} 인 등변사다리꼴이다. $\overline{AB}=10{
m cm},$ $\overline{\mathrm{AD}}=8\mathrm{cm}$, ∠A = 120°일 때, □ABCD의 둘레의 길이를 구하여라. (단, 단위는 생략한다.)

답:

▷ 정답: 46

 $\angle A + \angle B = 180$ °이므로 $\angle B = 60$ °이다.

해설

점 D를 지나고 \overline{AB} 와 평행한 직선이 \overline{BC} 와 만나는 점을 \overline{E} 라 하자. _8cm_

10 cm 120°

 $\overline{\mathrm{AD}} = \overline{\mathrm{BE}} = 8\mathrm{cm}, \ \overline{\mathrm{AB}} = \overline{\mathrm{DE}} = 10\mathrm{cm}$ 이고, 동위각이므로 $\angle ABE = \angle DEC = 60$ °이다. $\Delta \mathrm{DEC}$ 는 $\overline{\mathrm{DE}} = \overline{\mathrm{DC}} = 10\mathrm{cm}$ 에서 이등변삼각형임을 알 수 있고

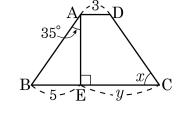
 $\overline{\mathrm{AD}}\,/\!/\,\overline{\mathrm{BE}},\,\overline{\mathrm{AB}}\,/\!/\,\overline{\mathrm{DE}}$ 이므로 $\Box\mathrm{ABED}$ 는 평행사변형이다.

밑각이 60°이므로 세 내각의 크기가 모두 같은 정삼각형이 된다. $\overline{\mathrm{DC}} = \overline{\mathrm{CE}} = \overline{\mathrm{ED}} = 10\mathrm{cm}$

 $\therefore \overline{BC} = \overline{BE} + \overline{EC} = 8 + 10 = 18cm$

따라서 둘레의 길이는 8+10+18+10=46(cm)이다.

28. 다음 그림과 같이 \overline{AD} $//\overline{BC}$ 인 등변사다리꼴 ABCD가 있다. $\overline{AD}=3$, $\overline{BE}=5$, $\angle BAE=35$ °일 때, $\angle DCB=x$ °, $\overline{CE}=y$ 이다. x+y의 값을 구하여라.



 ► 답:

 ▷ 정답:
 63

∠A + ∠C = 180°이므로 ∠A = 35° + 90° = 125°이고, ∠x = 180° - 125° = 55°이다.

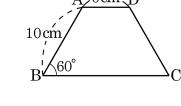
점 D에서 BC에 내린 수선의 발을 H라 하면

 $B \leftarrow \sum_{5 - E - y - z} C$ $\triangle ABE 와 \triangle DCH는 RHA 합동이므로 <math>\overline{BE} = \overline{CH}$ 이다.

 $\therefore x + y = 55 + 8 = 63$

 $\therefore y = 5 + 3 = 8$

29. 다음 그림의 $\square ABCD$ 는 \overline{AD} $//\overline{BC}$ 인 등변사다리꼴이다. $\overline{AD}=6cm, \overline{AB}=10cm, \ \angle ABC=60$ °일 때, \overline{BC} 의 길이를 구하여라.



 $\underline{\mathrm{cm}}$

▷ 정답: 16cm

V он . 10<u>сш</u>

답:

해설

점 D를 지나고 \overline{AB} 와 평행한 직선이 \overline{BC} 와 만나는 점을 E라고하면 $A \xrightarrow{6 \text{cm } D}$ 10 cm $B \xrightarrow{E}$ C $\angle ABE = \angle DEC = 60 ° 이고, □ABCD 는 등변사다리꼴이므로 <math>\angle B = \angle C = 60 °$ 이다.

따라서 ΔDEC 는 정삼각형므로 $\overline{BC}=6+10=16 (cm)$ 이다.

- 30. 직사각형의 중점을 연결했을 때 나타나는 사각형의 성질을 나타낸 것이다. 다음 중 옳지 <u>않은</u> 것은?
 - ① 네 변의 길이가 모두 같다.
 - ② 두 대각선이 서로 수직으로 만난다.

③ 두 쌍의 대변이 각각 평행하다.

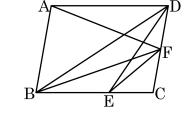
- ④ 네 각의 크기가 모두 직각이다.
- ⑤ 두 대각선이 내각을 이등분한다.

직사각형의 중점을 연결해 생기는 사각형은 마름모이다. 마름

해설

모는 네 각의 크기가 모두 직각이 아니다.

31. 다음 그림은 평행사변형 ABCD 이다. 다음 보기 중 넓이가 가장 넓은 것을 골라라.(정답 2개)



 \bigcirc $\triangle ADF$ \bigcirc \triangle ABD $\ \ \ \Box$ $\triangle {\rm BDF}$ □ △CDE ⊌ ∆ABF ▶ 답:

▶ 답:

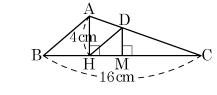
▷ 정답: □

▷ 정답: ⑭

밑변이 공통이면 높이가 높은 것이 넓이가 넓다. 평행사변형의 평행한 직선 \overline{AB} , \overline{DC} 에서 모두 밑변을 가지고

있으므로 밑변이 가장 긴 것을 찾고 그중 높이가 높은 것을 찾는다. 따라서 $\triangle ABD$, $\triangle ABF$ 가 가장 넓은 삼각형이다.

32. 다음 그림에서 점 M 은 $\overline{\mathrm{BC}}$ 의 중점일 때, $\Delta\mathrm{DHC}$ 의 넓이는?



- ① $4 \,\mathrm{cm}^2$ ④ $14 \,\mathrm{cm}^2$
- 2 8 cm^2
- $3 12 \, \mathrm{cm}^2$

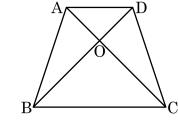
해설

 \bigcirc 16 cm²

 $\overline{\mathrm{AM}}$ 을 그으면, $\Delta\mathrm{DHM} = \Delta\mathrm{AMD}$ 이므로,

 $\triangle DHC = \triangle AMC = \frac{1}{2} \triangle ABC = 16 \text{ (cm}^2\text{)}$

33. 다음 그림과 같이 $\overline{AD}//\overline{BC}$ 인 사다리꼴 ABCD 에서 $\overline{OA}:\overline{OC}=1:2$ 이다. $\triangle AOD=48cm^2$ 일 때, $\Box ABCD$ 의 넓이는?



② 480cm^2 ⑤ 642cm^2 $3 562 \text{cm}^2$

9 042CIII

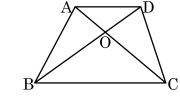
ΔΑΟD : ΔCOD = 1 : 2 이므로

해설

 $48: \triangle COD = 1:2$ $\therefore \triangle COD = 96 \, \mathrm{cm}^2$ 이때 $\triangle ABD = \triangle ACD$ 이므로 $\triangle ABO = \triangle COD = 96 \, \mathrm{cm}^2$ 또, $\triangle ABO : \triangle COB = 1:2$ 이므로 $\triangle COB = 1:2$ $\therefore \triangle COB = 192 \, \mathrm{cm}^2$

∴ □ABCD = 48 + 96 + 96 + 192 = 432(cm²)

34. 다음 그림과 같이 $\overline{AD}//\overline{BC}$ 인 사다리꼴 ABCD에서 $\triangle AOB = 80 \mathrm{cm}^2$, $2\overline{DO} = \overline{OB}$ 일 때, $\triangle DBC$ 의 넓이는?



 4240cm^2

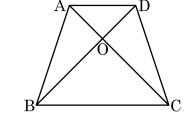
 \bigcirc 180cm²

- ② 200cm² ③ 260cm²
- ③ 220cm^2

24001

→해설 △AOB

△AOB = △COD = 80cm² 또, 2DO = OB 이므로 ∴ △BOC = 160cm² 따라서 △DBC = △COD + △BOC = 80 + 160 = 240(cm²) **35.** 다음 그림과 같이 $\overline{AD}//\overline{BC}$ 인 사다리꼴 ABCD 에서 \overline{OA} : \overline{OC} = 1 : 2 이다. □ABCD 의 넓이가 36 일 때, △BCO 의 넓이를 구하여라.



답:▷ 정답: 16

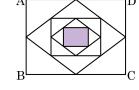
(△AOD의 넓이) = A 라 하자.

△AOD: △COD = 1: 2 이므로
A: △COD = 1: 2 ∴ △COD = 2A
이때 △ABD = △ACD 이므로
△ABO = △COD = 2A

또, △ABO: △BCO = 1: 2 이므로
2A: △BCO = 1: 2 ∴ △BCO = 4A
□ABCD = A + 2A + 2A + 4A = 36 ∴ A = 4
따라서 △BCO = 4A = 16 이다.

111223

36. 다음 그림은 직사각형 ABCD 를 시작으로 계속하여 각 변의 중점을 연결한 도형이다. 색칠된 부분의 넓이가 10 일 때, □ABCD 의 넓이를 구하여라.



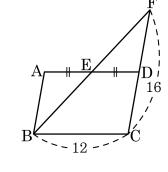
▶ 답:

▷ 정답: 160

각 변의 중점을 연결하여 만든 도형의 넓이는 처음 도형의 $\frac{1}{2}$ 이므로

 $x \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = 10$ $\therefore x = 160$

37. 다음 그림과 같은 평행사변형 ABCD에서 \overline{AD} 의 중점을 E , \overline{BE} 의 연장선과 \overline{CD} 의 연장선의 교점을 F라 할 때, \overline{AB} 의 길이를 구하여라.



 $\underline{\mathrm{cm}}$

정답: 8 cm

▶ 답:

 $\triangle AEB \equiv \triangle DEF(ASA) \cap \Box E$

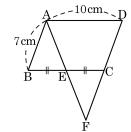
 $\overline{AB} = \overline{DF} = \overline{CD} = 16 \div 2 = 8 \text{(cm)}$ 이다.

 ${f 38}$. 다음 그림의 평행사변형 ABCD 에서 $\overline{
m BE}=$ $\overline{\text{CE}}$ 이코 $\overline{\text{AD}}=10\,\mathrm{cm},\overline{\text{AB}}=7\,\mathrm{cm}$ 일 때, $\overline{\text{DF}}$ 의 길이는?

> \bigcirc 7 cm $\textcircled{4} \ 16\,\mathrm{cm}$

 \bigcirc 9 cm ⑤ 18 cm

해설



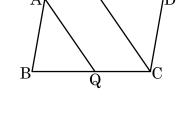
 $\overline{AB} = \overline{DC} = 7\,\mathrm{cm}, \ \overline{BE} = \overline{CE} = 5\,\mathrm{cm}$

∠AEB = ∠FEC (맞꼭지각) $\angle ABE = \angle FCE$ (엇각)

 $\triangle {\rm ABE} \equiv \triangle {\rm FCE}, \overline{\rm AB} = \overline{\rm FC} = 7\,{\rm cm}$

 $\therefore \overline{\mathrm{DF}} = \overline{\mathrm{DC}} + \overline{\mathrm{FC}} = 14 (\,\mathrm{cm})$

 $\overline{
m AD}=80{
m cm}$ 인 평행사변형 ABCD 에서 점 P 는 $3{
m cm/s}$ 의 속도로 꼭짓점 A 에서 꼭짓점 D 로 움직이고, 점 Q 는 $7 \mathrm{cm/s}$ 의 속도로 꼭 짓점 C 에서 꼭짓점 B 로 움직인다. 점 P 가 움직이기 시작하고 4 초 후에 점 Q 가 움직인다면 점 P 가 움직인지 몇 초 후에 $\square AQCP$ 가 평행사변형이 되겠는가?



① 6초후

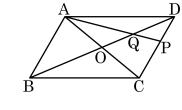
②7초후 ③ 8초후 ④ 9초후 ⑤ 10초후

해설

 $\overline{\mathrm{AP}} = \overline{\mathrm{QC}}$ 가 될 때까지 점 P 가 움직인 시간을 x 라고 하면 3x = 7(x - 4)

 $3x = 7x - 28, \ 4x = 28 \ \therefore x = 7(\bar{2})$

40. 평행사변형ABCD 에서 $\overline{\text{CP}}: \overline{\text{PD}}=3:2$, $\overline{\text{AQ}}: \overline{\text{QP}}=5:2$ 일 때, $\triangle \text{AOQ}$ 는 전체 넓이의 몇 배인지 구하여라



배

답:

ightharpoonup 정답: $rac{3}{28}$ <u>배</u>

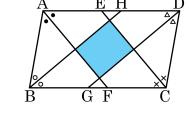
평행사변형ABCD 의 넓이를 S 라 두면, $\triangle ACD = \frac{1}{2}S$ $\overline{CP}: \overline{PD} = 3:2$ 이므로 $\triangle ACP = \frac{3}{5}\triangle ACD = \frac{3}{5}\left(\frac{1}{2}S\right) = \frac{3}{10}S$

그리고 $\triangle OAP = \frac{1}{2} \triangle ACP$, $\therefore \triangle OAP = \frac{3}{20}S$ 또한 \overline{AQ} : $\overline{QP} = 5:2$ 이므로 $\triangle AOQ = \frac{5}{7} \triangle OAP$

따라서 $\triangle AOQ = \frac{5}{7} \triangle OAP = \frac{5}{7} \left(\frac{3}{20} S \right) = \frac{3}{28} S$

((20) 28

41. 사각형 ABCD 가 평행사변형일 때, 색칠한 부분이 어떤 사각형이 되는지 구하여라. (단, $\overline{\rm AF}$ $/\!/\!/\,\overline{\rm EC}$, $\overline{\rm BH}$ $/\!/\!/\,\overline{\rm GD}$)

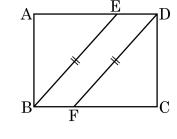


답:▷ 정답: 직사각형

2(◦+•) = 180°이므로◦+•=90°

해설

따라서 색칠한 부분의 사각형의 한 내각의 크기가 90°이므로 직사각형이다. 42. 다음 그림과 같은 직사각형 ABCD의 변 AD, BC 위에 $\overline{BE}=\overline{FD}$ 가 되도록 점 E, F를 잡을 때, $\square EBFD$ 는 어떤 사각형인가?

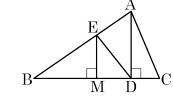


- ⑤ 등변사다리꼴
 ④ 직사각형
- ② 평행사변형 ③ 마름모 ⑤ 정사간형
- ⑤ 정사각형

△ABF ≡ △CDF (RHA 합동)이므로

해설

 $\overline{AE} = \overline{CF}$ 따라서 $\overline{ED} = \overline{BF}$ 한편 $\overline{BE} = \overline{DF}$ 이므로 $\square EBFD$ 는 평행사변형이다. 43. 다음 그림에서 $\overline{BM}=\overline{MC}$, $\overline{EM}\bot\overline{BC}$, $\overline{AD}\bot\overline{BC}$ 이다. $\triangle ABC$ 의 넓이가 $60\mathrm{cm}^2$ 일 때, $\Box AEDC$ 의 넓이는?

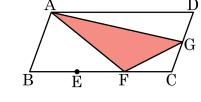


- ① 20cm² ④ 35cm²
- ② 25cm^2 ③ 40cm^2
- 30cm^2

 $\overline{
m EM}$ 과 $\overline{
m AD}$ 가 모두 $\overline{
m BC}$ 에 수직이므로 $\overline{
m EM}$ $//\!/$ $\overline{
m AD}$

따라서 밑변과 높이가 같으므로 $\triangle AED = \triangle AMD$ 이다. $\Box AEDC = \triangle AED + \triangle ADC = \triangle AMD + \triangle ADC = \triangle AMC$ $\therefore \Box AEDC = \frac{1}{2} \triangle ABC = 30 cm^2$

44. 다음 그림과 같이 평행사변형 ABCD의 넓이가 $240 \mathrm{cm}^2$ 이고 $\overline{\mathrm{BC}}$ 의 삼등분점을 E, F, $\overline{\text{CD}}$ 의 중점을 G라 할 때, ΔAFG 의 넓이는?



- ① $20 \, \text{cm}^2$ ② $40 \, \text{cm}^2$ $40 \, \text{cm}^2$ $100 \, \text{cm}^2$
- $360 \, \text{cm}^2$

$\triangle ABF$ 와 $\triangle AFC$ 에서 높이가 같고 밑변이 2:1이므로 $\triangle ABF:$

 $\triangle AFC = 2:1$ $\triangle ABF = \frac{2}{3} \times \triangle ABC = \frac{2}{3} \times \frac{1}{2} \times \Box ABCD = 80 (cm^2)$

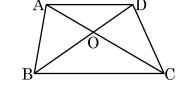
마찬가지 방법으로 $\Delta \mathrm{DFC} = \frac{1}{3} \Delta \mathrm{BDC}$

 $\triangle FCG = \frac{1}{2} \triangle DFC = \frac{1}{2} \times \frac{1}{3} \triangle BDC = \frac{1}{12} \square ABCD = 20 (cm^2)$ $\triangle AGD = \frac{1}{2} \triangle ACD = \frac{1}{4} \square ABCD = 60 (cm^2)$

∴ $\triangle AFG = \Box ABCD - \triangle ABF - \triangle AGD - \triangle FCG = 240 - 80 -$

 $60 - 20 = 80 (\text{cm}^2)$

45. 다음 그림과 같이 $\overline{\rm AD}//\overline{\rm BC}$ 인 사다리꼴 ABCD 에서 $\overline{\rm OA}$: $\overline{\rm OC}=2:3$ 이다. $\triangle AOD = 10 cm^2$ 일 때, $\Box ABCD$ 의 넓이를 구하여라.



▶ 답:

 $\underline{\mathrm{cm}^2}$

ightharpoonup 정답: $rac{125}{2}$ $m cm^2$

 $\triangle AOD$, $\triangle DOC$ 는 높이가 같다. $2:3=10 \mathrm{cm}^2:\triangle DOC$,

 $\Delta \mathrm{DOC} = 15 \mathrm{cm}^2$ $\triangle ABD = \triangle ACD$ 이므로 $\triangle ABO = \triangle DOC = 15 cm^2$

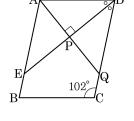
 $\triangle ABO$, $\triangle BCO$ 는 높이가 같다. $2:3=15 \mathrm{cm}^2:\triangle OBC$,

 $\triangle OBC = \frac{45}{2}cm^2$

 $\Box ABCD = \triangle AOD + \triangle DOC + \triangle OBC + \triangle ABO = 10 + 15 +$

 $15 + \frac{45}{2} = \frac{125}{2} (\text{cm}^2)$

46. 다음 평행사변형 ABCD 에서 DE 는 ∠D 의 이등분선이다. 점 A 에서 DE 에 수선을 내려 DE, CD 와 만나는 점을 각각 P, Q 라고 할 때, ∠PEB 의 크기를 구하여라.



➢ 정답: 141_°

▶ 답:

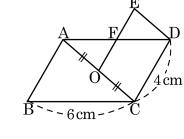
해설

 $\angle DAP = 90^{\circ} - 39^{\circ} = 51^{\circ}$ $\angle PAE = 102^{\circ} - 51^{\circ} = 51^{\circ}$

 $\angle ADP = (180^{\circ} - 102^{\circ}) \div 2 = 39^{\circ}$

:. $\angle PEB = 51^{\circ} + 90^{\circ} = 141^{\circ}$

47. 주어진 그림에서 점 O 는 \overline{AC} 의 중점이고, $\Box ABCD$, $\Box OCDE$ 는 모두 평행사변형이다. $\overline{AB}=4\mathrm{cm}$, $\overline{BC}=6\mathrm{cm}$ 일 때, $\overline{AF}+\overline{OF}$ 의 길이를 구하여라.



 $\triangle AOF \equiv \triangle DEF(ASA 합동)$ 이므로

②5cm

③ 6cm

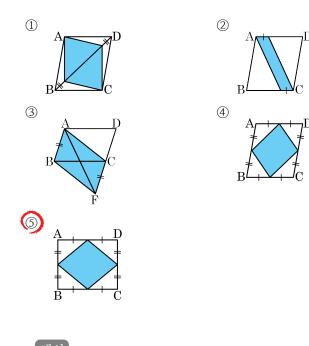
4 7cm

 \bigcirc 8cm

 \bigcirc 4cm

 $\overline{AF} = \frac{1}{2}\overline{AD}$ $\overline{OF} = \frac{1}{2}\overline{OE} = \frac{1}{2}\overline{CD}$ $\overline{AF} + \overline{OF} = \frac{1}{2}(\overline{BC} + \overline{OE}) = \frac{1}{2}(6+4) = 5(\text{cm})$

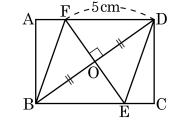
48. □ABCD 가 평행사변형일 때, 다음 색칠된 사각형 중 종류가 <u>다른</u> 하나는?



⑤=> 마름모

①,②,③,④=> 평행사변형

49. 다음 직사각형 ABCD에서 $\overline{BD}\bot\overline{FE}$ 일 때, 사각형 FBED의 둘레의 길이를 구하여라.

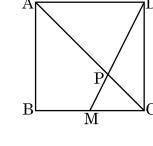


해설

① 18 cm ② 20 cm ③ 22 cm ④ 24 cm ⑤ 26 cm

 $\Delta FBO \equiv \Delta FDO(SAS합동)$ 이므로 $\overline{FB} = \overline{FD}$ $\Delta FOD \equiv \Delta EOB(ASA합동)$ 이므로 $\overline{FD} = \overline{EB}$ $\Delta BEO \equiv \Delta DEO(SAS합동)$ 이므로 $\overline{EB} = \overline{ED}$ 따라서 $\overline{FB} = \overline{EB} = \overline{ED} = \overline{FD}$ 이므로 $\Box FBED$ 는 마름모이다.
따라서 $\Box FBED$ 의 둘레의 길이는 $\overline{FB} + \overline{BE} + \overline{ED} + \overline{DF} = 4 \times 5 = 20$ (cm)

50. 다음 그림의 정사각형 ABCD에서 점 M은 B, C 의 중점이다. $\Delta PMC = 6\,\mathrm{cm^2\,9}$ 때, $\Box ABCD$ 의 넓이를 구하여라.



 답:
 cm²

 ▷ 정답:
 72 cm²

