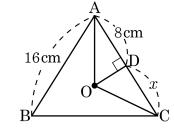
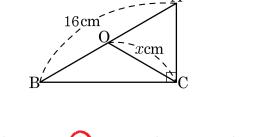
1. 다음 그림에서 점 O는 삼각형 $\triangle ABC$ 의 외심일 때, x의 값을 구하여라.



 답:

 ▷ 정답:
 8 cm

 $\triangle ADO \equiv \triangle CDO(RHS 합동)$ $\therefore x = \overline{AD} = 8 \text{ cm}$ 2. 다음 그림에서 점 O는 직각삼각형 ABC의 외심이다. $\overline{\rm AB}=16{
m cm}$ 일 때, x의 길이는?



① 4cm

② 6cm

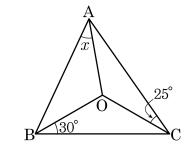
③8cm

④ 10cm

⑤ 12cm

점 O가 △ABC의 외심이므로

 $\overline{\mathrm{OA}} = \overline{\mathrm{OB}} = \overline{\mathrm{OC}}$ 이다. $\therefore x = \overline{\mathrm{OC}} = 8(\,\mathrm{cm})$ **3.** 점 O 가 ΔABC 의 외심일 때, ∠x 의 크기는?



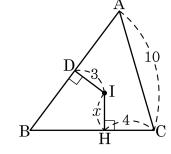
① 15° ② 20° ③ 25°

④ 30°

점 O 가 외심이므로, $\angle x + 30^{\circ} + 25^{\circ} = 90^{\circ}$

 $\therefore \angle x = 35^{\circ}$

4. 다음 그림에서 점 I가 ΔABC의 내심일 때, x의 값을 구하여라.



 답:

 ▷ 정답:
 3

삼각형의 내심에서 세 변에 이르는 거리는 같으므로 $x=\overline{\mathrm{IH}}=3$

이다.

- 5. 민수는 삼각형 모양의 색종이를 잘라 최대한 큰 원을 만들려고 한다. 순서대로 기호를 써라.
 - 에 내각의 이등분선의 교점을 I 라고 한다. 점 I 에서 한 변까지의 거리를 반지름으로 하는 원을
 - 그린다. © 그린 원을 오린다.
 - 예 세 내각의 이등분선을 긋는다.
 - _____

▶ 답:

▶ 답:

▶ 답:

답:

▷ 정답: ②

▷ 정답: ⑤

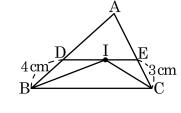
▷ 정답: □

▷ 정답: □

1. 세 내각의 이등분선을 긋는다. 2. 세 내각의 이등분선의 교점을 I 라고 한다.

- 3. 점 I 에서 한 변까지의 거리를 반지름으로 하는 원을 그린다.
- 그런다. 4. 그린 원을 오린다.
- 4. 그런 현글 보인역. _______

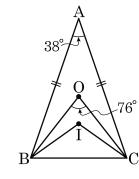
 ΔABC 에서 점 I 는 내심이다. 다음 그림과 같이 \overline{DE} 는 내심을 지나 6. 면서 \overline{BC} 에 평행일 때, \overline{DI} 의 길이는?



 $\bigcirc 1 \text{ cm}$ $\ensuremath{\bigcirc}\xspace 2\ensuremath{\,\mathrm{cm}}\xspace$ \Im 3 cm 4 cm

점 I 는 내심이므로 \angle DBI = \angle CBI , \angle CBI = \angle DIB (엇각) 즉, ∠DBI = ∠DIB 따라서 $\overline{BD} = \overline{DI} = 4\,\mathrm{cm}$

7. 다음 그림은 이등변삼각형 ABC 이다. 점 O 는 외심, 점 I 는 내심이고, ∠A = 38°, ∠O = 76° 일 때, ∠IBO 의 크기는?



① 14° ② 15.2°

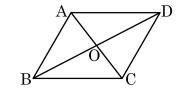
③16.5°

④ 17° ⑤ 17.5°

 $\angle BIC = 90^{\circ} + \frac{1}{2} \angle BAC = 109^{\circ}$ $\angle OBC = 52^{\circ}, \angle IBC = 35.5^{\circ}$

 $\angle OBI = \angle OBC - \angle IBC = 52^{\circ} - 35.5^{\circ} = 16.5^{\circ}$

8. 다음 중 다음 평행사변형 ABCD 에 대한 설명이 $\underline{\text{ord}}$ 것은?

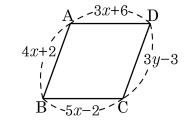


- ① $\overline{AB}//\overline{DC}, \overline{AD}//\overline{BC}$
 - ② $\angle A = \angle C, \angle B = \angle D$
- $\overline{\text{AC}} = \overline{\text{BD}}$

평행사변형의 성질 (1)두 쌍의 대변의 길이가 각각 같다.

- (2) 두 쌍의 대각의 크기가 각각 같다.
- (3) 두 대각선은 서로 다른 것을 이등분한다.(두 대각선은 각각의 중점에서
- 만난다.)

9. 다음 사각형 ABCD 가 평행사변형이 되도록 x, y 의 값을 정하여라.



답:답:

 \triangleright 정답: x=4

➢ 정답: y = 7

 $\overline{\mathrm{AD}} = \overline{\mathrm{BC}}, \ \overline{\mathrm{AB}} = \overline{\mathrm{DC}}$ 이므로

해설

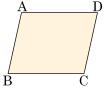
 $3x + 6 = 5x - 2, \ 2x = 8 \ \therefore x = 4$ 4x + 2 = 3y - 3

 $\begin{vmatrix} 16+2=3y-3\\ 3y=21 \end{vmatrix}$

3y = 21 $\therefore y = 7$

...y —

10. 다음 그림과 같은 평행사변형 ABCD에서 ∠A 와 ∠B의 크기가 7:3일 때, C의 크기를 구하 여라.



▷ 정답: 126_°

02. 120_

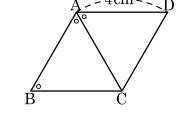
▶ 답:

 $\angle C = 180^{\circ} \times \frac{7}{10} = 126^{\circ}$

- **11.** 다음 중 평행사변형에 대한 설명으로 옳지 <u>않은</u> 것은?
 - 두 쌍의 대변이 평행하다.
 두 쌍의 대변의 길이가 같다.
 - ③ 두 쌍의 대각의 크기가 서로 같다.
 - ④ 두 대각선이 서로 수직이등분한다.
 - ⑤ 두 대각선은 서로 다른 것을 이등분한다.

두 대각선이 서로 수직이등분하는 것은 마름모와 정사각형이다.

12. 다음 그림과 같은 □ABCD에서 ∠A의 이등분선이 점 C와 만난다. □ABCD가 평행사변형이 되도록 할 때, \overline{AB} 의 길이를 구하여라.



 $\underline{\mathrm{cm}}$

정답: 4 cm

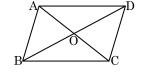
▶ 답:

∠ACB = • = ∠ACD = ∠ADC이므로

해설

△ABC ≡ △ACD는 정삼각형이다. ∴ ĀB = 4cm

13. 다음 그림의 □ABCD가 평행사변형이 되기 위한 조건으로 옳은 것을 보기에서 모두 골 라라.



- \bigcirc $\angle A = 130^{\circ}, \angle B = 50^{\circ}, \angle C = 130^{\circ}$ \bigcirc $\overline{AB} / / \overline{DC}, \overline{AD} / / \overline{BC}$
- \bigcirc $\overline{AD} // \overline{BC}, \overline{AB} = \overline{AD} = 7 \text{ cm}$
- $\ \ \, \mbox{$\cong$} \ \mbox{$\angle A = 70\,^{\circ}$, $\angle B = 110\,^{\circ}$, $\angle D = 70\,^{\circ}$}$ \bigcirc $\overline{AO} = \overline{CO}, \overline{BO} = \overline{DO}$
- (단, O는 두 대각선의 교점이다.)

▶ 답:

▶ 답:

답:

▷ 정답: つ

▷ 정답: 心

▷ 정답: □

해설

⑤ 사각형의 내각의 합은 $360\,^{\circ}$ 이므로 $\angle D=50\,^{\circ}$ 따라서 두 쌍의 대각의 크기가 같으므로 평행사변형이 된다.

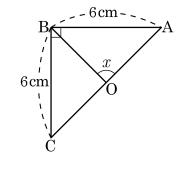
ⓒ (반례) 등변사다리꼴 7cm

ℂ 두 쌍의 대변이 각각 평행하므로 평행사변형이 된다.

② 사각형의 내각의 합은 360°이므로 $\angle C = 110$ °이다. 두 쌍의 대각의 크기가 같지 않으므로 평행사변형이 되지 않는다.

◎ 두 대각선이 서로 다른 것을 이등분하므로 평행사변형이 된다.

14. 다음 그림의 직각삼각형 ABC 에서 점 O 가 빗변의 중점일 때, $\angle x$ 의 크기를 구하면?

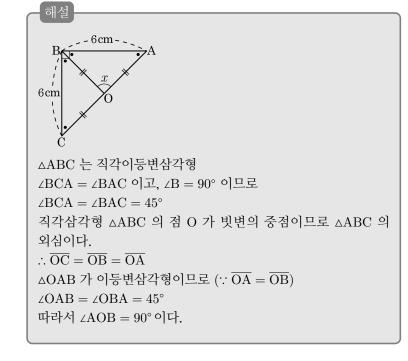


⑤90°

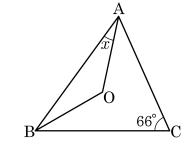
4 85°

② 75° ③ 80°

① 70°



15. 다음 그림에서 점 O 는 \triangle ABC의 외심이다. \angle ACB = $66\,^{\circ}$ 일 때 \angle BAO 의 크기는?



① 16° ② 20°

③24°

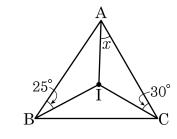
④ 30°

⑤ 33°

 $\angle AOB = 66^{\circ} \times 2 = 132^{\circ}$

 $\overline{\mathrm{OA}} = \overline{\mathrm{OB}}$ 이므로 $\triangle \mathrm{ABO}$ 에서 $2x + 132\,^{\circ} = 180\,^{\circ}$ $\therefore x = 24^{\circ}$

16. 다음 그림에서 점 I는 \triangle ABC의 내심일 때, $\angle x$ 값은 얼마인가?



 $\textcircled{1} \ 30^{\circ} \qquad \textcircled{2} \ 31^{\circ} \qquad \textcircled{3} \ 32^{\circ} \qquad \textcircled{4} \ 33^{\circ}$

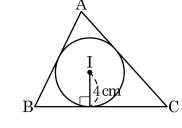
점 I가 \triangle ABC의 내심일 때, \angle BIC = $90^{\circ} + \frac{1}{2} \angle$ A 이다. 점 I가 세 내각의 이등분선의 교점이므로 \angle IBC = \angle ABI = 25° 이다.

삼각형의 내각의 합은 180°이므로 ∠BIC = 180°-30°-25°=

125 °이다. $\angle BIC = 90^{\circ} + \frac{1}{2} \angle A, 125^{\circ} = 90^{\circ} + \frac{1}{2} \angle A, \angle A = 70^{\circ}$

$$\therefore \ \angle x = \angle \text{CAI} = \frac{1}{2} \angle \text{A} = 35^{\circ}$$

17. 다음 그림에서 점 I 는 $\triangle ABC$ 의 내심일 때, $\triangle ABC$ 의 넓이가 $40cm^2$ 이다. 이 때, $\overline{AB}+\overline{BC}+\overline{AC}$ 의 값을 구하면?



③ 19cm

4 20cm

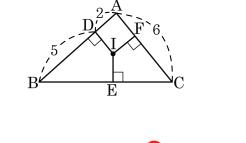
⑤ 21cm

 $\triangle ABC = \frac{1}{2} \times 4 \times (\overline{AB} + \overline{BC} + \overline{AC}) = 40$ 이다. 따라서 $\overline{AB} + \overline{BC} + \overline{AC} = 20$ cm 이다.

② 18cm

① 17cm

18. 다음 그림에서 점 I는 $\triangle ABC$ 의 내심이다. \overline{BC} 의 길이는?



① 6 ② 7 ③ 8

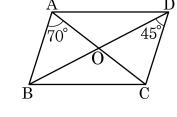
⑤ 10

 $\overline{\mathrm{AD}} = \overline{\mathrm{AF}} = 2$ 이코, $\overline{\mathrm{BD}} = \overline{\mathrm{BE}} = 5$ 이다.

 $\overline{\text{CE}} = \overline{\text{AC}} - \overline{\text{AF}} = 6 - 2 = 4$ 이므로

 $\overline{BC} = \overline{BE} + \overline{EC} = 9$

19. 평행사변형ABCD 에서 $\angle BAC = 70^\circ$, $\angle BDC = 45^\circ$ 일 때, $\angle OBC + \angle OCB$ 의 크기는?



⑤ 45°

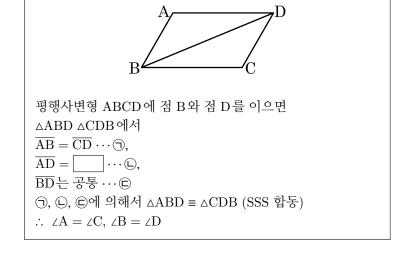
① 70° ② 65° ③ 60° ④ 50°

∠ABO = 45° (엇각) ∠OBC + ∠OCB 는 △OBC 외각

 $\therefore \angle AOB = 65^{\circ}$

해설

20. 다음은 '평행사변형에서 두 쌍의 대각의 크기가 각각 같다.' 를 증명한 것이다. □ 안에 들어갈 알맞은 것은?



 \bigcirc $\overline{\text{CB}}$

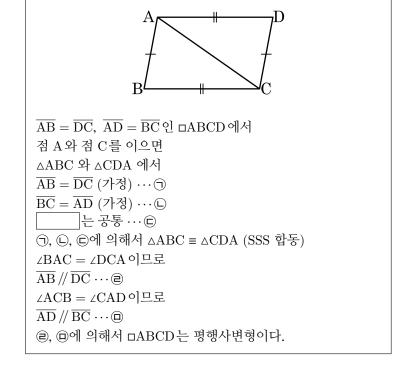
 \bigcirc \overline{AB} \bigcirc \bigcirc \overline{CD} \bigcirc \bigcirc \bigcirc \overline{AD} \bigcirc \bigcirc \bigcirc \overline{BD}

 \triangle ABD \triangle CDB 에서

해설

 $\overline{\mathrm{AB}} = \overline{\mathrm{CD}},\, \overline{\mathrm{AD}} = \overline{\mathrm{CB}},\, \overline{\mathrm{BD}}$ 는 공통이므로 $\triangle ABD \equiv \triangle CDB (SSS 합동)$ 이다.

21. 다음은 '두 쌍의 대변의 길이가 각각 같은 사각형은 평행사변형이다.' 를 증명하는 과정이다. □ 안에 들어갈 알맞은 것은?



① \overline{DC} ② \overline{BC} ③ \overline{DA}

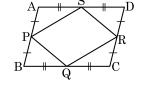
 $\overline{\text{4}}\overline{\text{AC}}$

 $\odot \overline{BA}$

AC는 공통

해설

- 22. 다음 그림과 같이 평행사변형 ABCD 의 각 변의 중점을 P, Q, R, S 라고 할 때, □PQRS 는 어떤 도형이 되는가?
 - ① 정사각형 ② 마름모
 - ③ 직사각형
 ④ 평행사변형
 - ⑤ 사다리꼴



두 쌍의 대변의 길이가 각각 같으므로 평행사변형이다.

해설

23. 평행사변형 ABCD 에서 선분 BE와 선분 DF 가 ∠B 와 ∠D 의 이등분선일 때, ∠BFD 의 크 기는?



① 60° ④ 120°

② 80° ⑤ 140° ③ 100°

해설

사각형 ABCD 가 평행사변형이므로 ∠BAD + ∠ABC = 180°

∠ABC = 2∠EBF 이므로 ∠EBF = 60° 이다. 사각형 BFDE 는 평행사변형이므로 ∠EBF + ∠BFD = 180° ∴ ∠BFD = 120°