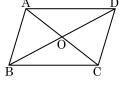
1. 다음 그림의 평행사변형 ABCD 가 마름모가 될 조건을 골라라.



 \bigcirc $\overline{AB} = \overline{AD}$ \bigcirc $\overline{AO} = \overline{AD}$ \blacksquare $\overline{\mathrm{BO}} = \overline{\mathrm{OC}}$ \square $\angle \mathrm{A} = 90^{\circ}$

 \bigcirc $\overline{AC} \bot \overline{BD}$

▶ 답:

▷ 정답: ⑤

▷ 정답: □

▶ 답:

평행사변형이 마름모가 되려면 이웃하는 두 변의 길이가 같고, 두 대각선이 서로 수직으로 만나야 한다.

- **2.** 다음 도형의 성질에 대한 설명 중 옳지 <u>않은</u> 것은?
 - 마름모의 두 대각선은 직교한다.
 직사각형의 두 대각선의 길이는 같다.
 - ③ 등변사다리꼴의 두 대각선은 수직으로 만난다.
 - ④ 등변사다리꼴의 평행하지 않은 두 변의 길이는 같다.
 - ⑤ 정사각형의 두 대각선은 서로 다른 것을 이등분한다.

③ 등변사다리꼴의 두 대각선의 길이가 같고, 대각선은 수직으로

만나지 않는다.

- 3. 다음 그림과 같이 $\overline{\mathrm{DE}}$ $/\!/$ $\overline{\mathrm{BC}}$ 일 때, x,y 의 값은?
 - ① x = 10, y = 24
 - ② x = 11, y = 25
 - 3 x = 12, y = 25
 - $4 \quad x = 12, y = 26$
 - \bigcirc x = 12, y = 27



6: x = 9: 18

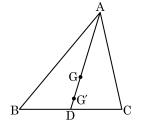
 $\therefore x = 12$

해설

27:9=y:9

 $\therefore y = 27$

4. 다음 그림에서 점 G 는 $\triangle ABC$ 의 무게중심이고, 점 G'는 $\triangle GBC$ 의 무게중심이다. $\overline{AD}=12\,\mathrm{cm}$ 일 때, $\overline{G'D}$ 의 길이는?



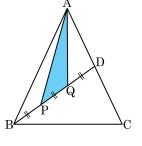
답:

<u>cm</u>

ightharpoonup 정답: $\frac{4}{3}$ $\underline{\mathrm{cm}}$

 $\overline{\text{GD}} = 12 \times \frac{1}{3} = 4 \text{ (cm)},$ $\overline{\text{G'D}} = 4 \times \frac{1}{3} = \frac{4}{3} \text{ (cm)}$

5. 다음 그림에서 \overline{BD} 는 $\triangle ABC$ 의 중선이다. $\overline{BP}=\overline{PQ}=\overline{QD}$ 이고 $\triangle DBC=18\,\mathrm{cm}^2$ 일 때, $\triangle APQ$ 의 넓이를 구하여라.



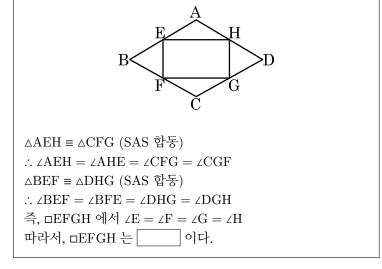
답:
 > 정답: 6 cm²

 $\underline{\mathrm{cm}^2}$

 $\overline{\mathrm{AD}} = \overline{\mathrm{CD}}$ 이므로 $\triangle \mathrm{ABD} = \triangle \mathrm{DBC} = 18\,\mathrm{cm}^2$

 $\triangle APQ = \frac{1}{3}\triangle ABD = \frac{1}{3} \times 18 = 6(\text{ cm}^2)$

6. 다음은 마름모 ABCD 의 각 변의 중점을 E, F, G, H 라 할 때, □EFGH 는 입을 증명하는 과정이다. 안에 들어갈 알맞은 것은?



② 직사각형 ③ 마름모

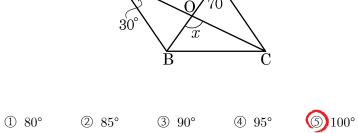
④ 정사각형 ⑤ 평행사변형

① 등변사다리꼴

해설

네 내각의 크기가 모두 같은 사각형은 직사각형이다.

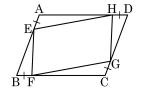
7. 다음 그림의 평행사변형 ABCD 에서 $\angle x$ 의 크기는?



∠ABO = ∠ODC = 68° (엇각)

 $\angle x = 30^{\circ} + 70^{\circ} = 100^{\circ}$

8. $\Box ABCD$ 가 평행사변형이고, $\overline{AE} = \overline{BF} = \overline{CG} = \overline{DH}$ 일 때, $\Box EFGH$ 도 평행사변형이다. 다음 중 옳지 <u>않은</u> 것은?



 $\odot \overline{EF} = \overline{HG}$

① $\triangle AEH \equiv \triangle CGF$

② △DGH ≡ △BEF

⑤ ∠EFG = ∠EHG

$\triangle AEH \equiv \triangle CGF \text{ (SAS 합동) 이므로 }\overline{EH} = \overline{FG}$

해설

 Δ DGH = Δ BEF (SAS 합동) 이므로 $\overline{\rm EF}=\overline{\rm HG}$ 따라서 \Box EFGH 는 두 쌍의 대변의 길이가 각각 같은 평행사변형이다.

9. 다음 평행사변형 ABCD 에서 색칠한 부분이 나타내는 도형의 종류를 써라.

M N C

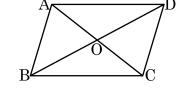
답:▷ 정답: 평행사변형

 $\overline{\mathrm{AB}} /\!/ \, \overline{\mathrm{DC}}$ 이므로

해설

 $\overline{AM} /\!/ \overline{NC}, \overline{AB} = \overline{DC}$ 이므로 $\overline{AM} = \overline{AB} - \overline{BM} = \overline{DC} - \overline{DN} = \overline{NC}$ $\therefore \overline{AM} /\!/ \overline{NC}, \overline{AM} = \overline{NC}$

10. 평행사변형 ABCD 에서 $\triangle AOB = 10$ 일 때, $\triangle COD$ 의 넓이를 구하여라.



답:

➢ 정답: 10

해설

평행사변형 ABCD 에서

ΔAOB 와 ΔCOD 의 넓이는 같다.

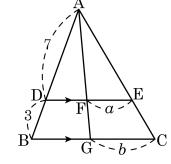
11. △ABC ∽△DEF 이고, 닮음비가 7 : 4일 때, △DEF 의 둘레의 길이가 24cm 라고 한다. 이 때, △ABC의 둘레의 길이는?

① 14cm ② 28cm ③ 35cm ④ 42cm ⑤ 56cm

 \triangle ABC의 둘레의 길이를 xcm라 하면 닮음비가 7:4이므로

7: 4 = x: 24 $\therefore x = 42$

12. 다음 그림에서 $\overline{\mathrm{BC}}//\overline{\mathrm{DE}}$ 이고, $\overline{\mathrm{AD}}=7,\ \overline{\mathrm{BD}}=3$ 일 때, a 를 b 에 관한 식으로 나타내면?



- ① $a = \frac{4}{7}b$ ② $a = \frac{7}{3}b$ ③ $a = \frac{5}{4}b$ ② $a = \frac{7}{10}b$

 $\overline{\mathrm{BC}}//\overline{\mathrm{DE}}$ 이므로

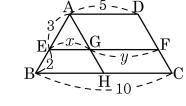
 $\overline{AD}: \ \overline{AB} = \overline{AF}: \ \overline{AG} = 7: (7+3) = 7: 10 \ \cdots \ \widehat{} \$

또, $\overline{\mathrm{BC}}//\overline{\mathrm{DE}}$ 이면 $\overline{\mathrm{GC}}//\overline{\mathrm{FE}}$ 이므로

 $\overline{AF}: \overline{AG} = \overline{EF}: \overline{CG} = a:b \cdots \bigcirc$ $\bigcirc, \bigcirc \cap A = a:b = 7:10$

10a = 7b 이므로 $a = \frac{7}{10}b$ 이다.

13. 다음 그림과 같이 $\overline{
m AD}//\overline{
m BC}$ 인 사다리꼴 ABCD에서 $\overline{
m EF}//\overline{
m BC}$ 일 때, x, y의 값을 각각 구하면?



- $\textcircled{4} x = 3, \ y = 5 \qquad \qquad \textcircled{5} \quad x = 2, \ y = 5$
- ① x = 3, y = 3 ② x = 2, y = 3 ③ x = 5, y = 3

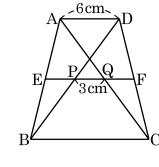
해설

$\overline{\mathrm{AB}}:\overline{\mathrm{AE}}=\overline{\mathrm{BH}}:\overline{\mathrm{EG}}$ 이므로 $5:3=5:x,\ x=3$ 이다.

 $\overline{\rm AD} = \overline{\rm GF} = \overline{\rm HC} = 5$ y = 5

따라서 x = 3, y = 5 이다.

14. 다음 그림은 $\overline{AD}//\overline{BC}$ 인 사다리꼴 ABCD 에서 점E 와 F 는 각각 \overline{AB} 와 \overline{DC} 의 중점이고, $\overline{AD}=6$ cm, $\overline{PQ}=3$ cm 일 때, \overline{BC} 의 길이는?



① 8cm

해설

② 10cm

③12cm

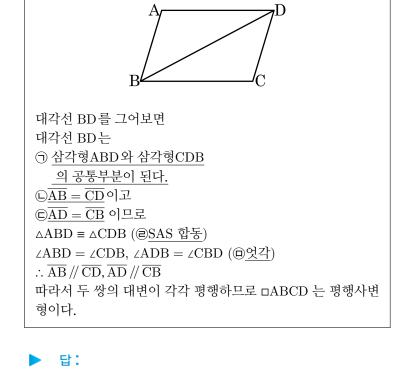
④ 14cm

⑤ 15cm

 $\overline{AE}:\overline{AB}=1:2$ 이므로 $\overline{EP}=3\mathrm{cm}$ 이다. $\triangle ABC$ 에서 $\overline{EQ}=$

6cm, 6: x = 1: 2이므로 $x = 6 \times 2 = 12$ 이다.

15. 다음 그림과 같은 □ABCD 에서 AB = CD, AD = CB 이면 □ABCD 는 평행사변형임을 설명하는 과정이다. ⑤~⑥ 중 옳지 <u>않은</u> 것을 기호로 써라.

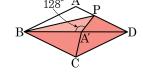


▷ 정답: ②

해설

SSS 합동

16. 마름모 ABCD 에서 꼭짓점 A 를 대각선 위에 오도록 접었다. 꼭짓점 A 가 대각선 위에 대응되는 점을 A′ 이라 할 때, ∠DA′C 의 크기는?



①103°

② 105° ③ 106° ④ 108° ⑤ 110°

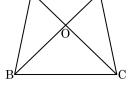
 $\overline{\mathrm{BA'}} = \overline{\mathrm{BC}}$ 이므로 $\Delta \mathrm{BCA'}$ 은 이등변삼각형이다.

이때 ∠CBA' = (180° - 128°) ÷ 2 = 26° 이므로 ∠BA'C = $(180 \, ^{\circ} - 26 \, ^{\circ}) \div 2 = 77 \, ^{\circ}$

따라서 $\angle DA'C = 180\,^{\circ} - 77\,^{\circ} = 103\,^{\circ}$

17. 다음 그림에서 \overline{AD} : \overline{BC} = 2 : 3 이고, $\Delta {
m AOD} = 24\,{
m cm}^2$ 일 때, 사다리꼴 ABCD

의 넓이를 구하시오.



▷ 정답: 150<u>cm²</u>

 ΔAOD 와 ΔBOC 는 닮음이고 닮음비는 2:3

해설

▶ 답:

이때, $\overline{\mathrm{OD}}$: $\overline{\mathrm{OB}} = 2:3$ 이므로 $\triangle AOD: \triangle AOB = 2:3, \ \triangle AOB = 36\,\mathrm{cm}^2$

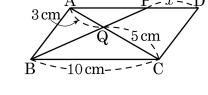
 $\underline{\mathrm{cm}^2}$

 $\triangle \mathrm{DOC} = 36\,\mathrm{cm}^2$ 그리고 $\overline{\mathrm{OA}}:\overline{\mathrm{OC}}=2:3$ 이므로

 $\triangle OAB : \triangle BOC = 2 : 3$

 $\therefore \triangle BOC = 54 \text{ cm}^2$ 따라서 $\square ABCD = 24 + 36 + 36 + 54 = 150 \text{ (cm}^2)$

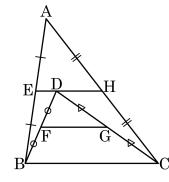
18. 다음 그림의 평행사변형 ABCD에서 $\overline{AQ}=3 \mathrm{cm}, \ \overline{QC}=5 \mathrm{cm}, \ \overline{BC}=10 \mathrm{cm}$ 일 때, x의 길이는?



 \bigcirc 4 cm ② 5 cm ③ 6 cm ④ 9 cm \bigcirc 12 cm

 $\triangle APQ$ \hookrightarrow $\triangle CBQ$ (AA 닮음) 이고, \overline{AP} 를 y cm 라 하면 3:5=y:10, y=6 cm 이다. $\overline{AD}=10$ cm 이므로 x=4 cm 이다.

19. 다음 그림과 같은 $\triangle ABC$ 에서 선분 AB, BD, DC, CA의 중점을 각각 E, F, G, H라 한다. $\overline{EH}=3cm$ 일 때, \overline{FG} 의 길이는?



① 1cm

② 2cm

33cm

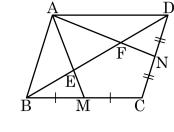
4cm

⑤ 5cm

점 E, H 가 각각 $\overline{\mathrm{AB}}$, $\overline{\mathrm{AC}}$ 의 중점이므로

 $\overline{EH} = \frac{1}{2}\overline{BC}$ \therefore $\overline{BC} = 2\overline{EH} = 2 \times 3 = 6 \text{(cm)}$ 점 F, G가 각각 \overline{BD} , \overline{CD} 의 중점이므로 $\overline{FG} = \frac{1}{2}\overline{BC}$ \therefore $\overline{FG} = \frac{1}{2} \times 6 = 3 \text{(cm)}$

20. 다음 그림과 같은 평행사변형 \overline{ABCD} 의 변 BC , \overline{CD} 의 중점을 각각 M, N 이라 하고, 대각선 BD 와 \overline{AM} , \overline{AN} 과의 교점을 각각 E, F 라고 할 때, \overline{BE} : \overline{EF} : \overline{FD} 는?



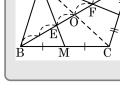
- ① 1:1:1 ④ 2:1:1
- ⑤ 2:3:2

② 1:2:1

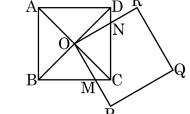
③ 1:2:2

대각선 AC 와 BD 의 교점을 O 라 하면 \triangle ABC 에서 $\overline{BE}=\frac{2}{3}\overline{BO}$, $\overline{EO}=\frac{1}{3}\overline{BO}$ \triangle ACD 에서 $\overline{FD}=\frac{2}{3}\overline{DO}$, $\overline{FO}=\frac{1}{3}\overline{DO}$ 이 고, $\overline{BO}=\overline{OD}$ 이므로 $\overline{EF}=\overline{EO}+\overline{FO}=\frac{2}{3}\overline{BO}$ 이다. 따라서 $\overline{BE}=\overline{EF}=\overline{FD}$ 이므로 $\overline{BE}:\overline{EF}:\overline{FD}=1:1:1$ 이다.

A D



21. 오른쪽 그림에서 O 는 두 대각선 \overline{AC} , \overline{BD} 의 중점이며 또, 두 정사각 형 $\square ABCD$ 와 $\square OPQR$ 은 합동이다. $\square OPQR$ 이 점 O 를 중심으로 회전을 하며, \overline{OP} 와의 $\square ABCD$ 와의 $\square ABCD$ 위를 움직일 때, $\square OBCD$ 의 넓이는 얼마인가? (단, $\overline{AB} = 4cm$)



① 2cm^2 ② 3cm^2 ③ 4cm^2 ④ 5cm^2 ⑤ 6cm^2

ΔOMC 와 ΔOND 에서 $\overline{OC} = \overline{OD}$ ∠OCM = ∠ODN = 45°
∠COM = 90° - ∠CON = ∠DON
∴ ∠COM = ∠DON
∴ ΔOMC ≡ ΔOND(SAS 합동)
즉, ΔOMC = ΔOND
따라서 □OMCN 의 넓이는 ΔOBC 의 넓이와 같다.
∴ □OMCN = $\frac{1}{4}$ □ABCD = 4(cm²)

22. 세 변의 길이가 12cm, 15cm, 24cm인 삼각형이 있다. 한 변의 길이가 4cm이고 이 삼각형과 닮음인 삼각형 중에서 가장 작은 삼각형의 가장 긴 변의 길이를 acm, 가장 큰 삼각형의 가장 짧은 변의 길이를 bcm라고 할 때, a+b의 값을 구하시오.

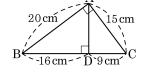
답:

▷ 정답: 8

해설 주어진 삼각형의 변의 길이의 비는 12 : 15 : 24 = 4 : 5 : 8이고

한 변의 길이가 4cm 인 삼각형을 만들면 3 가지 경우가 나온다. 가장 작은 삼각형의 세 변의 길이는 $2:\frac{5}{2}:4$ 이고, 가장 큰 삼각형의 세 변의 길이는 4:5:8이다. 따라서 a=4 , b=4 이므로 a+b 의 값은 8 이다.

 ${f 23}$. 다음 그림에서 ${f AD}$ 의 길이를 구하여라.



▶ 답: ▷ 정답: 12<u>cm</u>

 $\underline{\mathrm{cm}}$

△ABD 와 △CBA 에서

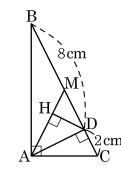
 $\overline{AB} : \overline{CB} = \overline{BD} : \overline{BA} = 4 : 5$ $\angle ABD = \angle CBA$

∴ △ABD ∽ △CBA(SAS닮음)

 $\overline{AB} : \overline{CB} = \overline{AD} : \overline{CA}$ $4:5=\overline{\rm AD}:15$

 $5\overline{\mathrm{AD}} = 60$, $\overline{\mathrm{AD}} = 12 (\mathrm{cm})$

 ${f 24}$. 다음 그림과 같이 $\angle A=90^\circ$ 인 $\triangle ABC$ 에서 점 M 이 외심일 때, \overline{DH} 의 길이는?

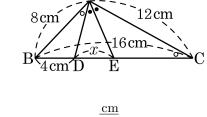


① 2 ② $\frac{12}{5}$ ③ $\frac{14}{5}$ ④ $\frac{16}{5}$ ⑤ $\frac{18}{5}$

 $\triangle ADB$ 와 $\triangle CDA$ 는 닮음이므로 $\overline{AD}^2=8\times 2=16$ 이다. 따라서 $\overline{AD}=4$ 이다. 점 M 이 외심이므로 $\overline{\mathrm{AM}}=5,\ \overline{\mathrm{MD}}=3$ 이다.

 $\triangle AMD$ 의 넓이는 $\frac{1}{2} \times \overline{MD} \times \overline{AD} = \frac{1}{2} \times 3 \times 4 = 6$ 이다. $6 = \frac{1}{2} \times 5 \times \overline{DH}, \quad \therefore \overline{DH} = \frac{12}{5}$

25. 다음 그림의 $\triangle ABC$ 에서 $\angle DAB = \angle ACB$, $\angle DAE = \angle CAE$ 일 때, x의 값을 구하여라.



▷ 정답: 4<u>cm</u>

▶ 답:

 $\angle B$ 는 공통, $\angle BAD = \angle BCA$.: $\triangle ABD$ \hookrightarrow $\triangle CBA$ (AA 닮음)

닮음비로 \overline{AB} : $\overline{BC} = \overline{AD}$: \overline{CA} 에서 $8:16 = \overline{AD}:12$ $\therefore \overline{AD} = 6(\,\mathrm{cm})$ \triangle ADC 에서 $\overline{\rm AE}$ 는 \angle CAD 의 이등분선이므로 6:12=x:

(12 - x)

 $\therefore x = 4(\text{cm})$