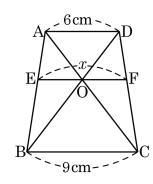

1. 다음 그림의 사다리꼴에서 $\overline{AD}=10$, $\overline{BC}=20$ 이다. $\overline{AE}:\overline{EB}=2:3$ 일 때, \overline{EF} 의 길이는?


① 13 ② 13.5 ③ 14 ④ 14.5 ⑤ 15

해설

 $\overline{AE}: \overline{AB}=2:5$, $\overline{EG}: \overline{BC}=2:5$ 이므로 $\overline{EG}:20=2:5$, $\overline{EG}=8$ 이다. $\overline{CF}:\overline{CD}=3:5$, $\overline{GF}:\overline{AD}=3:5$ 이므로 $\overline{GF}:10=3:5$, $\overline{GF}=6$ 이다. $\overline{EF}=8+6=14$

2. 다음 그림과 같이 $\overline{AD}//\overline{BC}$ 인 사다리꼴의 대각선의 교점 O 를 지나 \overline{BC} 에 평행한 직선이 \overline{AB} , \overline{DC} 와 만나는 점을 각각 E, F 라고 할 때, \overline{EF} 의 길이는?

① 7.1cm

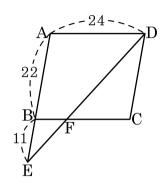
(4) 7.4cm

- ② 7.2cm ⑤ 7.5cm

③ 7.3cm

해설

 $\overline{\mathrm{AD}}//\overline{\mathrm{BC}}$ 이므로 $\triangle\mathrm{AOD} \odot \triangle\mathrm{COB}$ $\therefore \overline{\mathrm{AO}} : \overline{\mathrm{CO}} = \overline{\mathrm{AD}} : \overline{\mathrm{CB}} = 6 : 9 = 2 : 3$ $\triangle\mathrm{AEO} \odot \triangle\mathrm{ABC}$ 이므로


 $\overline{AO} : \overline{AC} = \overline{EO} : \overline{BC} = 2 : 5$ $\overline{EO} : 9 = 2 : 5 : \overline{EO} = 3.6 \text{(cm)}$

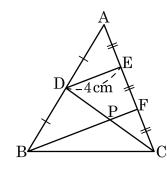
 $\triangle DOF \hookrightarrow \triangle DBC$ 이므로 $\overline{OF} : \overline{BC} = \overline{DO} : \overline{DB} = 2 : 5$

 $\overline{\text{OF}} : 9 = \underline{2} : 5 : \overline{\text{OF}} = 3.6 \text{(cm)}$

 $\therefore \overline{EF} = \overline{EO} + \overline{OF} = 3.6 + 3.6 = 7.2(cm)$

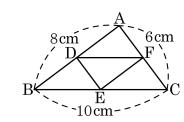
3. 다음 그림의 평행사변형 ABCD 에서 \overline{AB} 와 \overline{DF} 의 연장선과의 교점을 E 라고 할 때, \overline{CF} 의 길이를 구해라.

▶ 답:


▷ 정답: 16

$$\triangle BEF \hookrightarrow \triangle CDF$$
 이므로 $\overline{CF} = x$ 라 하면

 $\overline{BE} : \overline{CD} = \overline{BF} : \overline{CF}$ 11 : 22 = (24 - x) : x

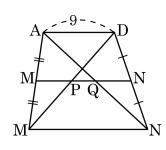

 $\therefore x = 16$

4. 다음 그림과 같은 $\triangle ABC$ 에서 점 D 는 \overline{AB} 의 중점이고, 점 E,F 는 \overline{AC} 를 삼등분하는 점이다. 점 P 가 \overline{BF} , \overline{CD} 의 교점이고, $\overline{DE} = 4cm$ 일 때, \overline{BP} 의 길이는?

$$\triangle ABF$$
 에서 $\overline{BF} = 2\overline{DE} = 2 \times 4 = 8 \text{ (cm)}$
 $\triangle CDE$ 에서 $\overline{DE} = 2\overline{PF}$ $\therefore \overline{PF} = 2 \text{ (cm)}$ $\therefore \overline{BP} = \overline{BF} - \overline{PF} = 8 - 2 = 6 \text{ (cm)}$ 이다.

5. 다음 그림과 같은 ΔABC에서 세 점 D, E, F 는 각각 변 AB, BC, CA 의 중점일 때, ΔDEF의 둘레의 길이는?

① 12cm ② 13cm ③ 14cm ④ 15cm ⑤ 16cm


$$\overline{DE} = \frac{1}{2}\overline{AC}, \ \overline{EF} = \frac{1}{2}\overline{AB}, \ \overline{FD} = \frac{1}{2}\overline{BC} \ \text{이다.}$$
따라서
$$\overline{DE} + \overline{EF} + \overline{FD} = \frac{1}{2}\overline{AC} + \frac{1}{2}\overline{AB} + \frac{1}{2}\overline{BC}$$

$$= \frac{1}{2}(\overline{AC} + \overline{AB} + \overline{BC})$$

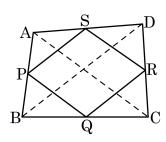
$$= \frac{1}{2}(6 + 8 + 10)$$

$$= 12(\text{cm})$$
이다.

6. 다음 그림의 사다리꼴 ABCD에서 점 M, N 은 각각 \overline{AB} , \overline{CD} 의 중점이다. $\overline{AD}=9\,\mathrm{cm}$, $\overline{MP}:\overline{PQ}=3:2$ 일 때, \overline{BC} 의 길이는?

① 11cm ② 12cm ③ 13cm ④ 14cm ⑤ 15cm

 $\overline{AM} = \overline{MB}, \overline{DN} = \overline{NC}$ 이므로 $\overline{AD} / / \overline{MN} / / \overline{BC}$


$$\triangle ABD$$
에서 $\overline{MP} = \frac{1}{2}\overline{AD} = \frac{9}{2}$ (cm)
$$\overline{MP} : \overline{PQ} = 3 : 2 \circ | \Box \Xi$$

$$\overline{PQ} = \frac{2}{3}\overline{MP} = \frac{2}{3} \times \frac{9}{2} = 3$$
 (cm)
$$\triangle ABC \circ | A \rangle$$

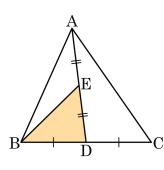
$$\overline{BC} = 2\overline{MQ} = 2 (\overline{MP} + \overline{PQ})$$

$$= 2 \times (\frac{9}{2} + 3) = 15$$
 (cm)

7. 다음 그림과 같은 □ABCD 의 네 변의 중점을 연결하여 만든 □PQRS
 의 둘레의 길이가 30cm 일 때, AC + BD 를 구하면?

3 25

4 28


해설

중점연결정리에 의해
$$\frac{1}{2}\overline{AC}=\overline{SR}=\overline{PQ}$$
 , $\frac{1}{2}\overline{BD}=\overline{PS}=\overline{QR}$

 $\therefore \left(\Box PQRS의 둘레의 길이\right) = \overline{SR} + \overline{PQ} + \overline{PS} + \overline{QR} = \overline{AC} + \overline{BD} =$

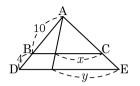
30

8. 다음 그림에서 \overline{AD} 는 $\triangle ABC$ 의 중선이고 점 E 는 \overline{AD} 의 중점이다. \triangle BDE 의 넓이가 7cm² 일 때, △ABC 의 넓이는?

① $14cm^2$

- ② 21cm^2
- (5) 35cm²

 $(3) 25 \text{cm}^2$

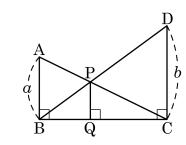

 $28 \mathrm{cm}^2$

해설

 $\overline{\text{BE}}$ 가 $\triangle ABD$ 의 중선이므로 $\triangle ABD = 2\triangle BDE = 2 \times 7 =$ 14 (cm²) 이고,

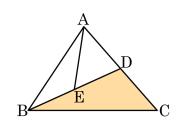
 \overline{AD} 가 $\triangle ABC$ 의 중선이므로 $\triangle ABC = 2\triangle ABD = 2 \times 14 = 1$ 28 (cm²) 이다.

9. 다음 그림과 같은 삼각형에서 $\overline{\rm DE}$ # $\overline{\rm BC}$ 일 때, $\frac{x}{y}$ 의 값을 구하여라.

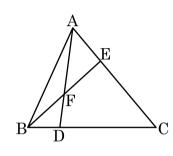


$$ightharpoonup$$
 정답: $\frac{5}{7}$

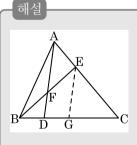
$$10: (10+4) = x: y$$
$$14x = 10y$$


$$\therefore \frac{x}{y} = \frac{10}{14} = \frac{5}{7}$$

10. 다음 그림에서 \overline{AB} , \overline{PQ} , \overline{DC} 가 각각 \overline{BC} 와 수직으로 만나고, $\overline{AB} = a$, $\overline{DC} = b$ 일 때, \overline{PQ} 의 길이를 a, b에 관한 식으로 나타내면?



△ABP
$$\bigcirc$$
 △CDP 이므로 $\overline{\mathrm{BP}}:\overline{\mathrm{DP}}=\overline{\mathrm{AB}}:\overline{\mathrm{CD}}=a:b$
 $\therefore \overline{\mathrm{BP}}:\overline{\mathrm{BD}}=a:a+b$
 $\overline{\mathrm{PQ}}//\overline{\mathrm{DC}}$ 이므로 $\overline{\mathrm{BP}}:\overline{\mathrm{BD}}=\overline{\mathrm{PQ}}:\overline{\mathrm{DC}}$
 $a:a+b=\overline{\mathrm{PQ}}:b$
 $(a+b)\overline{\mathrm{PQ}}=ab$
 $\therefore \overline{\mathrm{PQ}}=\frac{ab}{a+b}$


11. 다음 그림의 $\triangle ABC$ 에서 $\overline{AD} = \overline{CD}$, $\overline{BE} = \overline{DE}$ 이다. $\triangle ABE = 15 \, \mathrm{cm}^2$ 일 때, $\triangle BCD$ 의 넓이를 구하여라.

△ABE = △AED = 15 cm² 이고 △ABD = △BCD 이므로 △BCD = 30 cm² 이다. 12. 다음 그림과 같이 변 AC 의 삼등분 점 중 점 A 에 가까운 점을 E, \overline{BE} 의 중점을 F , 직선 AF 와 \overline{BC} 와의 교점을 D 라 할 때, $\triangle ABC$ 와 $\triangle ABD$ 의 넓이의 비를 바르게 구한 것은?.

① 2::1 ② 3:1 ③ 4:1 ④ 3:2 ⑤ 4:3

점 E 에서 \overline{AD} 에 평행한 선을 그어 \overline{BC} 와 만나는 점을 G 라고 하면 $\overline{BD}=\overline{DG}$ $\overline{DG}:\overline{GC}=\overline{AE}:\overline{EC}=1:2$

 $\overline{BD} : \overline{DC} = 1 : 3$ $\overline{BC} : \overline{DC} = 4 : 3$

 $\triangle ABC : \triangle ACD = 4 : 3$ $\triangle ABC : \triangle ACD = 4 : 3, \triangle ABC : \triangle ABD = 4 : 1$ 13. $\triangle ABC$ 의 넓이가 180 cm^2 이고 $\overline{BD}: \overline{DC}=1:2, \overline{AE}: \overline{ED}=2:3$ 일 때, $\triangle AEC$ 의 넓이를 구하여라.

B

정답: 48 cm²

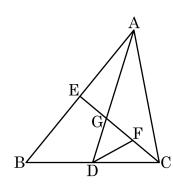
제설
$$\Delta AEC = \frac{2}{5} \times \Delta ADC$$

$$= \frac{2}{5} \times \frac{2}{3} \times \Delta ABC$$

$$= \frac{4}{15} \times \Delta ABC$$

$$= \frac{4}{15} \times 180 = 48 \text{ (cm}^2\text{)}$$

14. 다음 그림에서 점 G는 \triangle ABC 의 무게중심이다. $\overline{\text{GI}} = 5 \text{cm}$ 일 때, $\overline{\text{AH}}$ 의 길이를 바르게 구한 것은?



① 9 cm ② 12 cm ③ 15 cm ④ 18 cm ⑤ 21 cm

 $ilde{\Delta} ext{AHF}$ 에서 $\overline{ ext{FG}}: \overline{ ext{FA}} = \overline{ ext{GI}}: \overline{ ext{AH}}$ 이므로

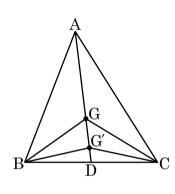
 $1:3=5:\overline{AH}, \ \overline{AH}=15\,\mathrm{cm}$

15. 다음 그림에서 점 G 는 \triangle ABC 의 무게중심이고, \overline{DF} 는 \triangle CDG 의 중선이다. \triangle GDF = $12\,\mathrm{cm}^2$ 일 때, \triangle ABC 의 넓이를 구하여라.

 cm^2

▷ 정답: 144 cm²

답:


$$\triangle GDF = \frac{1}{2} \triangle GDC$$

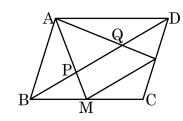
$$= \frac{1}{2} \times \frac{1}{6} \triangle ABC$$

$$= \frac{1}{12} \triangle ABC$$

 $= 144 \, (\, \text{cm}^2)$

16. 다음 그림에서 점 G, G'은 각각 \triangle ABC, \triangle GBC 의 무게중심이다. \triangle GG'C = 6cm² 일 때, \triangle ABC 의 넓이를 구하여라.

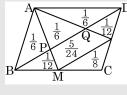
 ${\rm cm}^2$


 ▷ 정답:
 54 cm²

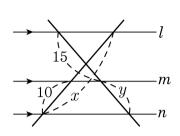
$$\triangle GG'C = \frac{1}{3} \triangle GBC$$
 이므로

 $\triangle GBC = 3\triangle GG'C = 18(cm^2)$ $\triangle GBC = \frac{1}{3}\triangle ABC$ 이므로

$$\therefore \triangle ABC = 3\triangle GBC = 54(cm^2)$$


17. 평행사변형 ABCD에서 BC, DC의 중점을 각각 M, N이라 하고, BD 와 AM, AN 과의 교점이 P, Q이다. □ABCD = 90cm² 라고 할 때, △ABP의 넓이는?

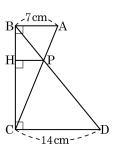
 $15 \mathrm{cm}^2$


- $\bigcirc 10 \text{cm}^2$
 - 2 2 2 2
- $4 18 \text{cm}^2$ 30cm^2

해설 □ABCD의 넓이를 1이라 할 때, 각 부분의 넓이는 다음과 같다. A 1 D

따라서 $\triangle ABP = 90 \times \frac{1}{6} = 15$ 이다.

18. 다음 그림에서 직선 *l* 과 *m*, 직선 *m* 과 *n* 사이의 거리가 각각 12, 8 일 때, *x*, *y* 의 값을 구하여라.

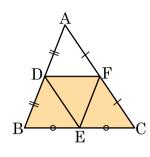

- ▶ 답:
- ▶ 답:
- > 정답: *x* = 25
- > 정답: y = 10

해설

직선 l 과 m, 직선 m 과 n 사이의 거리가 각각 12, 8 이므로 3:2=15:y, 따라서 y=10 이고, 3:2=(x-10):10 이므로 x=25 이다.

19. 다음과 같이 $\overline{AB}=7\mathrm{cm},\overline{DC}=14\mathrm{cm}$ 이고 $\overline{AB},\overline{PH},\overline{DC}$ 는 모두 \overline{BC} 와 수직일 때, \overline{PH} 의 길이를 구하여라.

cm



$$ightharpoonup$$
 정답: $\frac{14}{3}$ $\underline{\mathrm{cm}}$

$$\overline{AB} : \overline{DC} = \overline{AP} : \overline{CP} = 1 : 2$$
 이므로
 $\overline{BC} : \overline{CH} = 3 : 2$
 $\overline{BC} : \overline{CH} = \overline{AB} : \overline{PH}$

 $3:2=7:\overline{PH}$ \overline{PH}

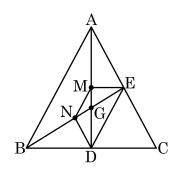
20. 다음 그림에서 점 D, E, F는 각각 BC, CA, AB의 중점이다. △ADF 의 넓이가 5cm²일 때, □BDFC의 넓이는?

 \bigcirc 12cm²

 $15 \mathrm{cm}^2$

- ② 13cm² ⑤ 16cm²
 - _

 $3 14 \text{cm}^2$


해설

 $\triangle ADF \equiv \triangle BED \equiv \triangle DEF \equiv \triangle FEC \text{ (SSS 합동) 이므로 } \triangle ABC$ 의 넓이는

 $4 \times \triangle ADF = 4 \times 5 = 20 (cm^2)$ 이다.

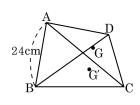
따라서 aBDFC 의 넓이는 20 - 5 = 15(cm²)이다.

21. 다음 그림의 삼각형 ABC 에서 두 중선 AD 와 BE 의 교점을 G 라하고, 각각의 중점을 M, N 이라 하였다. ΔAME 의 넓이가 6 일 때, 사각형 MNDE 의 넓이를 구하여라.

답

▷ 정답: 9

 $\overline{AM} = \overline{MD}$ 이므로 $\Delta EMD = \Delta AEM = 6$ G 는 무게중심이므로

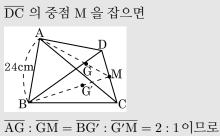

 $\overline{\mathrm{MG}}:\overline{\mathrm{GD}}=1:2$

 $\triangle MEG = \frac{1}{3} \times 6 = 2$

 $\overline{\text{NG}}: \overline{\text{EG}} = 1:2$ 이므로 $\Delta \text{MNG} = \frac{1}{2} \times 2 = 1$ $\Delta \text{DNG} = 2\Delta \text{MNG} = 2$

 $\triangle DNG = 2\triangle MNG = 2$ $\therefore \square MNDE = \triangle EMD + \triangle MNG + \triangle DNG$

= 6 + 1 + 2= 9 **22.** 다음 그림에서 점 G, G' 는 각각 \triangle ACD , \triangle DBC 의 무게중심이다. $\overline{AB} = 24\,\mathrm{cm}$ 일 때, $\overline{GG'}$ 의 길이를 구하여라.

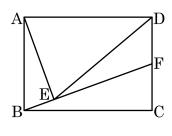


▶ 답:

해설

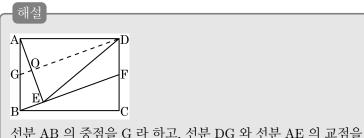
 $\underline{\mathrm{cm}}$

▷ 정답: 8 cm



 $\overline{\mathrm{GG'}}$ $//\overline{\mathrm{AB}}$ 이다.

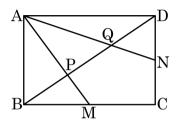
 $\therefore \overline{GG'} = \frac{1}{3} \times 24 = 8(\text{ cm})$


 $\overline{GG'}: \overline{AB} = \overline{MG}: \overline{MA} = 1:3$

23. 다음 직사각형 ABCD 에서 점 F 는 선분 CD 의 중점이고, 선분 AD 와 선분 DE 의 길이는 같다. ∠DAE = 70° 일 때, ∠DEF 의 크기는 얼마인지 구하여라.

답:

▷ 정답: 20 °

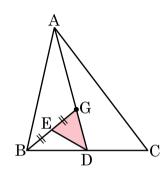


O 라 두면,

이등변삼각형의 성질에 의해 ∠AOD = 90° 이다. ∠AOD 와 ∠AEF 은 동위각이므로, ∠AEF = 90°

 $\therefore \angle DEF = \angle AEF - \angle AED = 90^{\circ} - 70^{\circ} = 20^{\circ}$

24. 다음 그림의 평행사변형 ABCD 에서 점 M,N 은 각각 \overline{BC} , \overline{CD} 의중점이다. $\overline{BD}=21\,\mathrm{cm}$ 대각선 \overline{BD} 와 \overline{AM} , \overline{AN} 과의 교점을 각각 P,Q 라 할 때, \overline{PQ} 의 길이를 바르게 구한 것은?


① 5 cm ② 6 cm ③ 7 cm ④ 8 cm ⑤ 9 cm

해설

대각선 AC 를 긋고 \overline{BD} 와 만나는 점을 R 이라고 하자. 점 P 는 $\triangle ABC$ 의 무게중심이고, $\overline{BP}: \overline{PR}=2:1$ 이다. 같은 방법으로 점 Q 는 $\triangle ACD$ 의 무게중심이고, $\overline{DQ}: \overline{QR}=2:1$ 이다.

 $\overline{BR} = \overline{DR}$ 이므로 $\overline{BP} : \overline{PQ} : \overline{QD} = 1 : 1 : 1$ 이다.

25. 다음 그림에서 점 G는 \triangle ABC의 무게중심이고, $\overline{EB} = \overline{EG}$ 이다. \triangle ABC의 넓이가 24cm^2 일 때, \triangle GDE의 넓이를 구하여라.

 ${\rm cm}^2$

▷ 정답: 2 cm²

$$\triangle GBD = \frac{1}{6} \triangle ABC = 4(\text{ cm}^2)$$

 $\overline{\mathrm{GE}}:\overline{\mathrm{EB}}=1:1$ 이므로

 $\triangle GDE = \frac{1}{2} \triangle GBD = 2(\text{cm}^2)$ 이다.