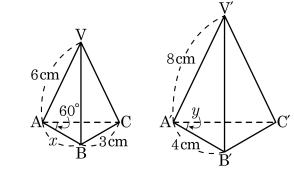

1. 다음 그림에서 $\triangle ABC \hookrightarrow \triangle A'B'C'$ 일 때, \overline{AC} 에 대응하는 변과 $\angle C'$ 에 대응하는 각을 순서대로 나열하면?



- ① ĀB, ∠A ④ Ā'B', ∠C
- ② \overline{AC}, \(\alpha \text{C}' \)
 ③ \overline{A'C'}, \(\alpha \text{C}' \)
- $\ \overline{A'B'}, \angle B$

해설

 $\overline{\mathrm{AC}}$ 에 대응하는 변은 $\overline{\mathrm{A'C'}}$ 이다. ${\it ∠C'}$ 에 대응하는 각은 ${\it ∠C}$ 이다.

2. 다음 그림에서 두 삼각뿔 V – ABC 와 V′ – A′B′C′ 가 닮은꼴일 때, y-x 의 값은?

①57

② 60

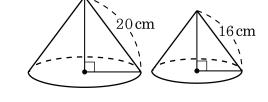
③ 63

4 64

⑤ 65

닮음비는 $\overline{\mathrm{VA}}:\overline{\mathrm{V'A'}}=6:8=3:4$ 이므로

해설


x: 4=3: 4, 4x=12 $\therefore x=3$

 $\triangle ABC$ \hookrightarrow $\triangle A'B'C'$ 이므로 $\angle BAC = \angle B'A'C'$

∴ $y^{\circ} = 60^{\circ}$ ∴ y - x = 60 - 3 = 57

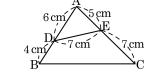
 $\therefore y - x =$

3. 다음 그림에서 두 원뿔이 서로 닮은 도형일 때, 두 원뿔의 밑면의 지름의 길이의 비가 a:b 이다. 이때, a+b의 값을 구하여라. (단, a,b는 서로소)

답:

▷ 정답: 9

해설


두 원뿔이 닮음이므로 모선의 길이의 비와 밑면의 지름의 길이의

비가 같으므로 20 : 16 = 5 : 4이다. 따라서 a+b=9 이다.

다음 그림에서 $\overline{\mathrm{BC}}$ 의 길이는? **4.**

315cm

해설

∠A는 공통 $\overline{\mathrm{AB}}:\overline{\mathrm{AE}}=\overline{\mathrm{AC}}:\overline{\mathrm{AD}},\ \angle\mathrm{A}$ 는 공통 이므로

 $\triangle ABC \hookrightarrow \triangle AED(SAS닮음)$ $2:1=\overline{\mathrm{BC}}:7$

 $\overline{BC} = 14(cm)$

다음 그림에서 $\triangle ABC$ 와 $\triangle DEF$ 는 닮은 도형이다. x, y 의 값을 구하 **5.** 여라.

답: 답:

▷ 정답: ∠x = 30°

▷ 정답: y = 24

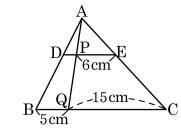
해설 $\angle E = \angle B = 30^{\circ}, \angle x = 30^{\circ}$

 $\overline{\mathrm{AC}}:\overline{\mathrm{DF}}=\overline{\mathrm{BA}}:\overline{\mathrm{ED}}$ 9:12=18:y

y = 24

6. 다음 그림에서 x 의 값은?

5cm / E / xcm


① $\frac{1}{2}$ ② $\frac{3}{2}$ ③ $\frac{5}{2}$

⑤ 4

 $\triangle ABC$ 와 $\triangle AED$ 에서 $\angle A$ 는 공통,

 $\angle ACB = \angle ADE = 90$ °이므로 △ABC ∽ △AED (AA 닮음) $\overline{AC} : \overline{AD} = \overline{BC} : \overline{ED}$ (5+x):4=6:3 $3\left(5+x\right)=24$ $5 + x = 8 \qquad \therefore x = 3$

7. 다음 그림의 $\triangle ABC$ 에서 \overline{BC} $/\!/\!\!/ \overline{DE}$ 이고 $\overline{PE}=6cm, \ \overline{BQ}=5cm, \ \overline{QC}=15cm$ 일 때, \overline{DP} 의 길이는?

34cm

4 5cm

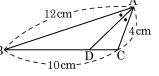
⑤ 6cm

 $\overline{\mathrm{BC}}\,/\!/\,\overline{\mathrm{DE}}$ 이므로 $\triangle\mathrm{APE}$ \bigcirc $\triangle\mathrm{AQC}$ $2:5=\overline{\mathrm{AP}}:\overline{\mathrm{AQ}}\cdots$ \bigcirc ,

 $\overline{\mathrm{BC}} / / \overline{\mathrm{DE}}$ 이므로 $\triangle \mathrm{ADP} \bigcirc \triangle \mathrm{ABQ}$ $\overline{DP} = x$ 라 하면

 \bigcirc 3cm

 $\overline{AP}: \overline{AQ} = x : 5 \cdots \bigcirc$


③,ⓒ에서 2:5=x:5,5x=10∴ x=2

.. x – z

① 2cm

해설

다음 그림의 \overline{AD} 는 $\angle A$ 의 이등분선이다. $\overline{AB}=12\,\mathrm{cm}$, $\overline{AC}=4\,\mathrm{cm}$, $\overline{BC}=$ 8. $10\,\mathrm{cm}$ 일 때, $\overline{\mathrm{BD}}$ 의 길이는?

 $\bigcirc 3 \, \mathrm{cm}$ $47 \, \mathrm{cm}$

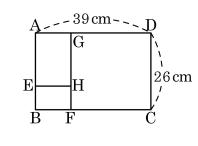
3 5 cm

12: 4 = x : (10 - x) 이므로 x = 3(10 - x) x = 30 - 3x 4x = 30 $\therefore x = \frac{15}{2}$ (cm)

9. 다음과 같은 그림에서 $\angle A=igsqcup \circ$ 이고, $\angle E=igsqcup \circ$ 이어야 다음 두 삼각형은 닮은 도형이 된다 . _____ 안에 알맞은 수를 써 넣어라.

5 cm

답: 답:


▷ 정답: 75

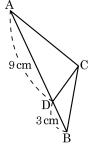
➢ 정답: 70

 $\angle A = 75$ °, $\angle E = 70$ ° 이면

∠B = 35°, ∠D = 75°가 되므로 ∠ABC∽△DFE (AA 닮음)

 ${f 10}$. 다음 그림에서 세 직사각형 ABCD, GAEH, EBFH 가 닮음일 때, $\overline{
m BF}$ 의 길이를 구하여라.

 $\underline{\mathrm{cm}}$

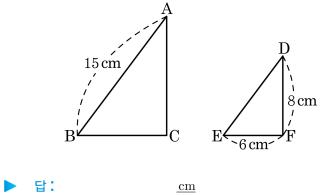

▷ 정답: 12cm

▶ 답:

 $\overline{\mathrm{AD}}:\overline{\mathrm{DC}}=\overline{\mathrm{GH}}:\overline{\mathrm{HE}}=\overline{\mathrm{EH}}:\overline{\mathrm{HF}}$ $\overline{AD}:\overline{DC}=39:26=3:2$ $\overline{EH}=\overline{BF}=a$ 라고 하면 $\overline{HF}=\frac{2}{3}a$, $\overline{GH}=\frac{3}{2}a$ $\overline{\text{GH}} + \overline{\text{HF}} = \overline{\text{DC}} = 26 \text{(cm)}$ 이므로 $\frac{3}{2}a + \frac{2}{3}a = 26$, $\frac{13}{6}a = 26$, a = 12 (cm)

 $\therefore \overline{\mathrm{BF}} = 12 (\mathrm{cm})$

- 11. 그림 속 두 삼각형 $\triangle ABC$ 와 $\triangle CBD$ 가 닮은 도형일 때, $\overline{\mathrm{BC}}$ 의 길이는?
 - $\bigcirc 6 \, \mathrm{cm}$ $4 \ 3 \, \mathrm{cm}$
- \bigcirc 5 cm \bigcirc 2 cm
- $34 \, \mathrm{cm}$

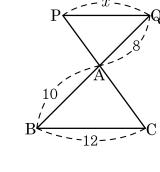


 $\triangle ABC \circlearrowleft \triangle CBD$ $\overline{\mathrm{AB}}:\overline{\mathrm{CB}}=\overline{\mathrm{BC}}:\overline{\mathrm{BD}}$

 $12 : \overline{BC} = \overline{BC} : 3$ $\overline{BC}^2 = 36$ $\therefore \overline{BC} = 6 \text{ cm } (\because \overline{BC} > 0)$

해설

12. 다음 그림에서 $\triangle ABC$ \hookrightarrow $\triangle DEF$ 이고, 닮음비가 3:2 일 때, $\triangle ABC$ 의 둘레의 길이를 구하여라.


 $\underline{\mathrm{cm}}$

▷ 정답: 36<u>cm</u>

해설

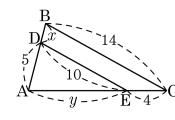
△ABC : △DEF = 3 : 2 이므로 $\overline{AB} : \overline{DE} = 15 : \square = 3 : 2$ $\overline{\rm DE}=10\,\rm cm$ $\overline{BC} = 9\,\mathrm{cm}$ $\overline{AC} = 12\,\mathrm{cm}$ 따라서 $\triangle ABC$ 의 둘레의 길이= 15+9+12따라서 $36\,\mathrm{cm}$ 이다.

13. 다음 그림에서 \overline{PQ} $//\overline{BC}$ 이고 $\overline{AQ}=8$, $\overline{AB}=10$, $\overline{BC}=12$ 일 때, x 의 값은?

3 9

① 6 ② 8

49.6


⑤ 15

 $\triangle APQ$ \hookrightarrow $\triangle ACB$ 이므로 $\overline{AB}: \overline{AQ} = \overline{BC}: \overline{PQ}$

10: 8 = 12: x $10x = 96 \qquad \therefore x = 9.6$

10% - 00

14. 다음 그림에서 $\overline{\mathrm{DE}} \, / \! / \, \overline{\mathrm{BC}}$ 일 때, x+y 의 값은?

해설

① 10

212

③ 14 ④ 16 ⑤ 18

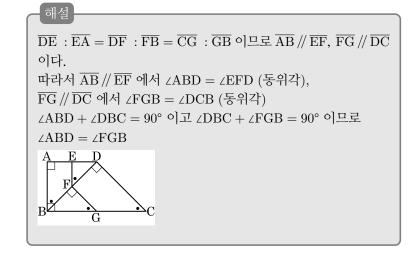

△ADE ∽ △ABC 이므로

10:14=y:(y+4)y = 10

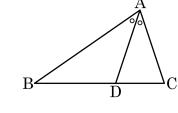
10:4=5:x

x = 2 $\therefore x + y = 12$

15. 사각형 ABCD 에서 $\overline{\mathrm{DE}}$: $\overline{\mathrm{EA}} = \overline{\mathrm{DF}}$: $\overline{\mathrm{FB}} = \overline{\mathrm{CG}}$: $\overline{\mathrm{GB}}$ 이고, $\angle A = \angle ABC = \angle BDC = 90^\circ$ 일 때, 다음 중 크기가 다른 하나를 고르면?



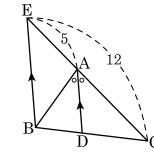
① ∠ABD ④ ∠FGB


⑤ ∠DCB

② ∠EFD

③ ∠DBC

16. 다음 그림의 삼각형 ABC 에서 \overline{AD} 는 $\angle A$ 의 이등분선이고, \overline{AB} : $\overline{AC}=5:3$ 이다. 삼각형 ACD 의 넓이가 $40\mathrm{cm}^2$ 일 때, 삼각형 ABD 의 넓이를 구하면?



- ① 8cm^2 ② 10cm^2 ④ $\frac{100}{3} \text{cm}^2$
- $3 \frac{50}{3} \text{cm}^2$

 $\overline{\mathrm{BD}}:\overline{\mathrm{DC}}=5:3$ 이므로 $\triangle\mathrm{ABD}:\triangle\mathrm{ADC}=5:3$ $\triangle\mathrm{ABD}:40=5:3$

 $\therefore \triangle ABD = \frac{200}{3} (cm^2)$

17. 다음 그림에서 $\overline{\mathrm{AD}}$ 가 $\angle \mathrm{A}$ 의 이등분선일 때, $\Delta \mathrm{ABC}$, $\Delta \mathrm{ACD}$ 의 넓이 S_1 , S_2 의 비는?

4 12 : 7

⑤ 12:5

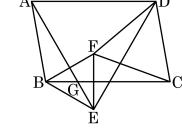
① 5:7 ② 7:12 ③ 7:5

해설 $\overline{\mathrm{AD}}$ 는 $\Delta \mathrm{ABE}$ 의 외각의 이등분선이므로 $\overline{\mathrm{AE}} = \overline{\mathrm{AB}}$ 이다. $\Delta \mathrm{ABD}$

와 ΔACD 의 밑변의 길이의 비는 5:7 이고 높이는 서로 같으 므로 넓이의 비도 5:7 이다. 따라서 $\triangle ABC$, $\triangle ACD$ 의 넓이의 비는 $S_1: S_2 = 12: 7$ 이다.

18. 다음 중 항상 닮은 도형은 몇 개인지 구하여라.

① 두 원
 ◎ 두 원기둥
 ◎ 두 정오각형
 ◎ 두 직각이등변삼각형
 ⑥ 두 원뿔
 ④ 두 마름모


 답:
 개

 ▷ 정답:
 3 개

항상 닮은 도형은 두 원, 두 정오각형, 직각이등변삼각형 의 3 개이다.

해설

19. 다음 그림과 같이 평행사변형 ABCD 위에, 변 AD 를 공유하는 정삼 각형 ADE 와 변 CD 를 공유하는 정삼각형 CDF 를 그렸다. ∠ABE = 130°일 때, ∠ABF 의 크기를 구하여라.

➢ 정답: 70_°

▶ 답:

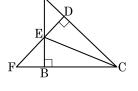
 $\overline{DE} = \overline{AD} = \overline{BC}, \ \overline{CF} = \overline{CD} = \overline{AB}$

해설

 $\angle BAE = \angle BAD - 60^{\circ} = \angle DCB - 60^{\circ} = \angle BCF$ ∴ $\triangle BAE \equiv \triangle FCB \text{ (SAS <math>\overline{Q}^{1} - \overline{S}^{\circ})}$

 $\angle EBF = \angle EBC + \angle FBC$

 $= \angle EBC + \angle BEA$


 $= \angle EGC$ $= \angle EAD = 60^{\circ}$

 \therefore $\angle ABF = \angle ABE - \angle EBF = 130^{\circ} - 60^{\circ} = 70^{\circ}$

20. 다음 그림에서 서로 닮음인 삼각형이 <u>잘못</u> 짝지어진 것은?

① △FDC∽△ABC

- ② △ADE∽△FBE
- ③ △ADE∽△ABC
- ⑤ △FDC∽△ADE

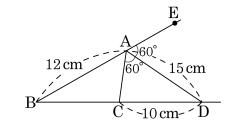
- 해설 ① ^ A

- ① △ABC 와 △FDC 에서 ∠C 는 공통, ∠ABC = ∠FDC = 90° ∴ △ABC ∽ △FDC (AA 닮음)
- ② AADE 와 AFBE 에서 ZDAE = ZBFE, ZEDA = ZEBF =
- 90° ∴ △ADE∽△FBE (AA 닮음)
- ③ ΔADE 와 ΔABC 에서 ∠A 는 공통, ∠EDA = ∠CBA = 90°
- .: △ADE ♡ △ABC (AA 닮음) ②와 ③ 에 의해 △ADE ♡ △ABC ♡ △FBE .: △ABC ♡ △FBE
- ⑤ ①,③에 의해 ∴ △FDC ∽ △ADE

21. 각 변의 길이가 다음과 같을 때, $\overline{\mathrm{DE}}$ 의 길이를 x에 관한 식으로 나타 내어라.

▶ 답:

ightharpoonup 정답: $\frac{4}{7}x$


해설

 $\overline{\mathrm{AD}}:\overline{\mathrm{AC}}=4:7$

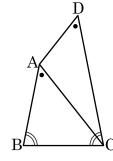
 $\overline{AE} : \overline{AB} = 6 : \left(4 + \frac{13}{2}\right) = 6 : \frac{21}{2} = 12 : 21 = 4 : 7$ ∠A는 공통

따라서 $\triangle ADE \bigcirc \triangle ACB(SAS닮음)$ $\overline{DE}: x = 4:7 \circ | 므로 7\overline{DE} = 4x$ $\therefore \ \overline{\mathrm{DE}} = \frac{4}{7}x$

22. 다음 그림의 $\triangle ABC$ 에서 $\angle CAD = \angle EAD = 60^{\circ}$, $\overline{AB} = 12 \mathrm{cm}$, $\overline{\mathrm{CD}} = 10\mathrm{cm}, \ \overline{\mathrm{AD}} = 15\mathrm{cm}$ 일 때, $\overline{\mathrm{AC}}$ 의 길이는?

② 5cm

 $3 \frac{24}{5} \text{cm}$


① 6cm ② 5cm ④ $\frac{15}{4}$ cm ③ $\frac{20}{3}$ cm

 $\angle BAC = 60^\circ$ 이므로 \overline{AC} 는 $\angle BAD$ 의 이등분선이다. 따라서 \overline{AB} : $\overline{AD} = \overline{BC}$: \overline{CD} 이므로 $12:15=\overline{\mathrm{BC}}:10$

 $\overline{AB}: \overline{BC} = 8(cm)$ $\overline{AB}: \overline{AC} = \overline{BD}: \overline{CD}$ 이므로 12 : $\overline{AC} = 18:10$

따라서 $\overline{AC} = \frac{20}{3} \text{ cm}$ 이다.

23. 다음 그림과 같은 $\square ABCD$ 에서 $\overline{AB}=8$, $\overline{AC}=10$, $\overline{AD}=6$ 이고, $\angle B = \angle C$, $\angle BAC = \angle D$ 일 때, \overline{CD} 의 길이를 구하여라.

▶ 답: ightharpoonup 정답: $rac{64}{5}$

다음 그림과 같이 $\overline{\mathrm{AB}}$ 의 연장선과 $\overline{\mathrm{CD}}$ 의 연장선이 만나는 점을 P 라 하면 $\angle B = \angle C$ 이므로 $\overline{PB} = \overline{PC}$

 ΔPAD 와 ΔPCA 에서 $\angle P$ 는 공통

 $\angle PDA = 180^{\circ} - \angle ADC = 180^{\circ} - \angle BAC = \angle PAC$ ∴ △PAD ∽ △PCA (AA 닮음)

 $\overline{\mathrm{PA}}:\overline{\mathrm{PC}}=\overline{\mathrm{AD}}:\overline{\mathrm{CA}}$ $\overline{\mathrm{PA}} = (\overline{\mathrm{PB}} - 8) = (\overline{\mathrm{PC}} - 8)$

 $\overline{PC} - 8 : \overline{PC} = 6 : 10 = 3 : 5$

 $5\overline{\mathrm{PC}}-40=3\overline{\mathrm{PC}}$

 $2\overline{\mathrm{PC}}=40$ $\overline{PC} = 20$

 $\overline{\mathrm{PA}} = 20 - 8 = 12$ 이므로 $\overline{\mathrm{PA}}:\overline{\mathrm{PC}}=\overline{\mathrm{PD}}:\overline{\mathrm{PA}}$

 $12:20=\overline{PD}:12$

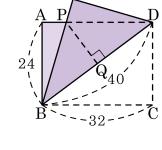
 $\overline{PD} = \frac{36}{5}$

 $\therefore \overline{CD} = \overline{PC} - \overline{PD} = 20 - \frac{36}{5} = \frac{64}{5}$ 이다.

24. 다음 그림에서 $\angle FDC = \angle FBC = 90^\circ$, $\overline{AF} = 15$, $\overline{DF} = 9$, $\overline{FB} = 5$, $\overline{AC} = 25$ 일 때, $\triangle ABC$ 의 넓이를 구하여라.

▷ 정답: 150

▶ 답:


△ABC 와 △EDC 에서

 $\angle A$ 가 공통, $\angle FDC = \angle FBC = 90^\circ$ △ABC ∽ △ADF (AA 닮음) $\overline{\mathrm{DF}}:\overline{\mathrm{BC}}=\overline{\mathrm{AF}}:\overline{\mathrm{AC}}$ $9:\overline{\mathrm{BC}}=15:25$

 $\overline{\mathrm{BC}} = 15$

따라서 $\triangle ABC$ 의 넓이는 $20 \times 15 \times \frac{1}{2} = 150$ 이다.

 ${f 25}$. 다음 그림은 $\overline{
m AB}=24$, $\overline{
m BC}=32$, $\overline{
m BD}=40$ 인 직사각형 ABCD 에서 대각선 BD 를 접는 선으로 하여 점 $\mathbb C$ 가 점 $\mathbb E$ 에 오도록 접은 것이다. \overline{AD} 와 \overline{BE} 의 교점 P 에서 \overline{BD} 에 내린 수선의 발을 Q 라 할 때, \overline{PQ} 의 길이를 구하여라.

▷ 정답: 15

▶ 답:

해설

∠PBQ = ∠QBC (접었으므로) $\angle QBC = \angle PDQ$ (엇각)

따라서 △PBD 는 이등변삼각형이다.

점 P 에서 $\overline{\mathrm{BD}}$ 에 내린 수선은 $\overline{\mathrm{BD}}$ 를 이등분하므로 $\overline{\mathrm{BQ}}=20$

 $\angle BQP = \angle BED = 90^\circ$, $\angle PBQ = \angle DBE$ (공통) △BQP∽△BED (AA 닮음)

따라서 \overline{BQ} : $\overline{BE} = \overline{PQ}$: \overline{ED} $20:32=\overline{PQ}:24$

 $\therefore \overline{PQ} = \frac{20 \times 24}{32} = 15$

따라서 $\overline{PQ} = 15$ 이다.