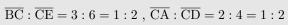
- 1. 다음 그림과 같은 평행사변형 ABCD 에 대 하여 두 대각선의 교점 P 를 지나는 직선과 변 AD , 변 BC 가 만나는 점을 각각 E, F 라 할 때, 다음 중 옳지 <u>않은</u> 것은?

① $\triangle ABP \equiv \triangle CDP$

ΔEPA 와 ΔBPF 는 합동이 아니다.

해설

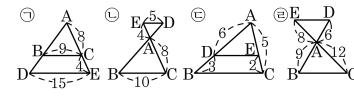
- 다음의 그림에서 △ABC 와 닮음인 삼각형과 2. 닮음 조건을 바르게 짝지어 놓은 것은?
 - ① ΔEDC(SSS닭음) ② ADEC(AA닮음)
 - ③ ΔCDE(SSS닭음)
 - ④ ΔDEC(SSS닮음)
 - ⑤ ΔDEC(SAS닮음)



해설

 $\angle ECD = \angle BCA(맞꼭지각)$ 따라서 $\triangle ABC \hookrightarrow \triangle DEC(SAS닮음)$ 이다.

다음 그림 중 $\overline{ m DE}//\overline{ m BC}$ 인 것을 두 가지 고르면? 3.

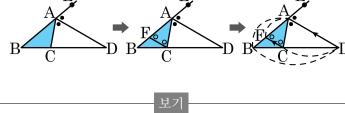


4 L, **2** ① ⑦, ⓒ \bigcirc \bigcirc , \bigcirc \bigcirc \bigcirc , \bigcirc ⑤ ⑦, ②

해설

 \bigcirc $\overline{\rm DE}//\overline{\rm BC}$ 라면, $\overline{\rm AE}:\overline{\rm ED}=\overline{\rm AC}:\overline{\rm CB}$ 이다. 4:8=5:10 이므로 $\overline{\mathrm{DE}}//\overline{\mathrm{BC}}$ 이다. $extstyle \overline{DE}//\overline{BC}$ 라면, $\overline{AE}:\overline{AD}=\overline{AC}:\overline{AB}$ 이다. 8:12=6:9 이므로 $\overline{\mathrm{DE}}//\overline{\mathrm{BC}}$ 이다.

다음은 삼각형의 외각의 이등분선으로 생기는 선분의 비를 구하는 **4.** 과정이다. 빈칸에 알맞은 말을 차례대로 나열하면?



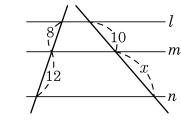
 $\overline{\mathrm{AD}}$ 는 $\angle \mathrm{A}$ 의 외각의 이등분선 $\angle ACF = \bigcirc$ 이므로 $\triangle ACF$ 는 이등변삼각형 $\overline{\mathrm{AD}} /\!/ \overline{\mathrm{FC}}$ 에서 $\overline{\mathrm{AB}} : \overline{\mathrm{AC}} = \overline{\mathrm{BD}} :$ \Box

4 $\angle AFC$, \overline{CD} 5 $\angle AFC$, \overline{AD}

① $\angle ACD$, \overline{BC} ② $\angle ACD$, \overline{CD} ③ $\angle ACD$, \overline{AB}

 $\triangle \mathrm{BDA}$ 에서 $\overline{\mathrm{BA}}:\overline{\mathrm{FA}}=\overline{\mathrm{BD}}:\overline{\mathrm{CD}}$ 이다.

5. 다음 그림에서 l/m/m일 때, x의 값은?



15

② 14.5

③ 12

4 10.5

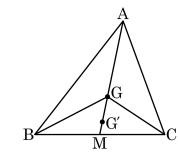
⑤ 10.5

8:12=10:x

8x = 120

 $\therefore x = 15$

6. 다음 그림에서 점 G는 $\triangle ABC$ 의 무게중심이고 점 G'은 $\triangle GBC$ 의 무게중심이다. $\overline{\mathrm{GG'}}=4\mathrm{cm}$ 일 때, $\overline{\mathrm{AG}}$ 는 $\overline{\mathrm{G'M}}$ 의 길이의 몇 배인가?



⑤6배

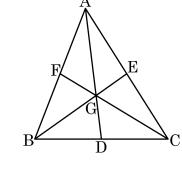
해설

 $\overline{\mathrm{GG'}}:\overline{\mathrm{G'M}}=2:1$ 이므로 $\overline{\mathrm{G'M}}=rac{1}{2}$ $\overline{\mathrm{GG'}}=2\,\mathrm{(cm)}$ $\overline{GM} = \overline{GG'} + \overline{G'M} = 6\,(\mathrm{cm})$

 $\overline{\mathrm{AG}}$: $\overline{\mathrm{GM}} = 2:1$ 이므로 $\overline{\mathrm{AG}} = 2\overline{\mathrm{GM}} = 2 \times 6 = 12\,\mathrm{(cm)}$

따라서 $\overline{\mathrm{AG}}$ 는 $\overline{\mathrm{G'M}}$ 의 길이의 6배이다.

7. 다음 그림에서 점 G 가 \triangle ABC 의 무게중심일 때, 다음 중 옳지 않은

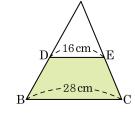


- $\overline{\text{Q}}\overline{\text{AG}} = \overline{\text{BG}} = \overline{\text{CG}}$ $\textcircled{4} \triangle AGC = \triangle BCG$
- \bigcirc $\triangle ABC = 6 \triangle AGE$

① $\overline{AG} = 2\overline{GD}$

점 G 가 $\triangle ABC$ 의 무게중심이므로 $\overline{AG}=\frac{2}{3}\overline{AD}, \ \overline{BG}=$ $\frac{2}{3}\overline{\text{BE}},\ \overline{\text{CG}}=\frac{2}{3}\overline{\text{CF}}$ 이고, $\triangle \text{ABC}$ 의 세 중선 $\overline{\text{AD}},\ \overline{\text{BE}},\ \overline{\text{CF}}$ 의 길이가 서로 같은지 알 수 없으므로 \overline{AG} , \overline{BG} , \overline{CG} 는 서로 같다고 할 수 없다.

다음 그림에서 $\overline{
m DE}/\!\!/\,\overline{
m BC}$ 이고 $m \triangle ADE$ =8. $48\,\mathrm{cm}^2$ 일 때, □DBCE 의 넓이를 구하여라.



 $\underline{\mathrm{cm}^2}$ ▷ 정답: 99<u>cm²</u>

답:

해설

 $\triangle ADE$, $\triangle ABC$ 의 닮음비는 16:28=4:7넓이의 비는 $4^2:7^2=16:49$ 이므로 $\triangle ADE : \Box DBCE = 16 : (49 - 16) = 16 : 33$

 $48: \square DBCE = 16:33$ $\therefore \Box DBCE = 99 \left(\, cm^2 \right)$

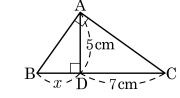
- 9. 직사각형의 중점을 연결했을 때 나타나는 사각형의 성질을 나타낸 것이다. 다음 중 옳지 <u>않은</u> 것은?
 - ① 네 변의 길이가 모두 같다.
 - ② 두 대각선이 서로 수직으로 만난다.
 - ③ 두 쌍의 대변이 각각 평행하다.④ 네 각의 크기가 모두 직각이다.
 - ③ 두 대각선이 내각을 이등분한다.

직사각형의 중점을 연결해 생기는 사각형은 마름모이다. 마름

해설

모는 네 각의 크기가 모두 직각이 아니다.

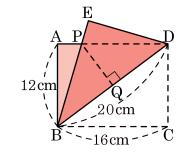
10. 다음 그림의 \triangle ABC에서 x의 값은?



① $\frac{25}{7}$ cm ② $\frac{36}{7}$ cm ③ $\frac{7}{5}$ cm ④ $\frac{36}{7}$ cm

해설 $\overline{AD}^2 = \overline{BD} \times \overline{DC} \circ \Box \Box \Box \Box$ $5^2 = x \times 7$ $\therefore x = \frac{25}{7}$

11. 다음 그림은 직사각형 ABCD 에서 대각선 BD 를 접은 선으로 하여 점 C 가 점 E 에 오도록 한 것이다. \overline{PQ} 의 길이를 구하면?



4 8cm

 \bigcirc 6.5cm

② 7cm ⑤ 8.5cm ③7.5cm

0 --

 $\triangle ABP$ ≡ $\triangle EDP$ 이므로 $\triangle PBD$ 는 이등변삼각형이므로 \overline{BQ} =

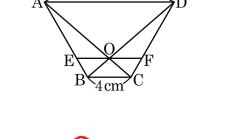
해설

10cm 이다. △PBQ 와 △DBC 에서

∠PBQ = ∠DBC, ∠PQB = ∠DCB 이므로

△PBQ ∽△DBC (AA 닮음)

12. 다음 그림과 같이 $\overline{AD}//\overline{BC}$ 인 사다리꼴 ABCD 에서 두 대각선의 교점 O 을 지나고 \overline{BC} 와 평행한 선분 EF 에 대하여 선분 EF 의 길이는?



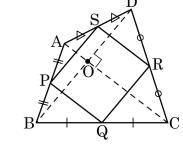
36cm

④ 7cm ⑤ 8cm

 $\triangle AEO$ 와 $\triangle ABC$ 의 닮음비가 3:4 이므로 $\overline{EO}=3$ 이다.

 $\Delta \mathrm{DOF}$ 와 $\Delta \mathrm{DBC}$ 의 닮음비도 3:4 이므로 $\overline{\mathrm{OF}}=3$ 이다. 따라서 $\overline{\mathrm{EF}}=6$ 이다.

13. 다음 그림과 같은 $\square ABCD$ 에서 \overline{AB} , \overline{BC} , \overline{CD} , \overline{DA} 의 중점을 각각 P, Q, R, S 라 하고 $\overline{AC} \bot \overline{BD}$, $\overline{AC} = \overline{BD}$ 이면, $\square PQRS$ 는 어떤 사각형인가?



④ 직사각형

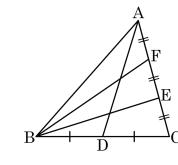
① 사다리꼴

- ② 평행사변형③ 정사각형
- ③ 마름모

해설

AC = BD 이므로 PQ = QR = RS = SP 이고, ∠AOD = ∠PSR = 90° 이므로 □PQRS 는 정사각형이다.

14. 다음 그림에서 점 E,F 는 \overline{AC} 의 삼등분점이고 \overline{AD} 는 $\triangle ABC$ 의 중 선이다. $\triangle ABF$ 를 a 라 할 때, $\triangle ABD$ 를 a에 관하여 나타내면?

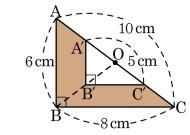


① $\frac{7}{2}a$ ② $\frac{5}{2}a$ ③ 2a ④ $\frac{3}{2}a$ ⑤ 3a

점 E,F 가 $\overline{\mathrm{AC}}$ 의 삼등분점이므로 $\triangle\mathrm{ABC}=3\triangle\mathrm{ABF}=3a$ 이고,

 $\triangle {
m ABC} = 2 \triangle {
m ABD} = 3a$ 이다. 따라서 $\triangle {
m ABD} = rac{3}{2}a$ 이다.

15. 다음 그림의 두 직각 삼각형이 닮은 도형일 때, 색칠된 부분의 넓이 는?(점 O 는 닮음의 중심이다.)



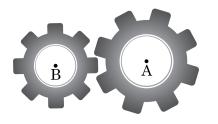
- \bigcirc 6cm²
- \bigcirc 12cm^2 \bigcirc 24cm²
- 318cm^2
- $4 20 \text{cm}^2$

 $\triangle ABC$ \bigcirc $\triangle A'B'C'$ 이므로 $\overline{AC}:\overline{A'C'}=10:5=1:2$ 이고

해설

넓이의 비는 1:4 이다. $\triangle ABC$ 의 넓이는 $6\times 8\times \frac{1}{2}=24$ 이고 $\Delta A'B'C'$ 넓이를 x 라 하면 1:4=x:24따라서 색칠된 부분의 넓이는 $24-6=18(\mathrm{cm}^2)$ 이다.

16. 다음 그림의 톱니바퀴에서 A 톱 니바퀴가 5회전하면 B 톱니바 퀴는 7회전한다. B 톱니바퀴의 넓이가 $150\pi\,\mathrm{cm}^2$ 일 때, A 톱니 바퀴의 넓이를 구하면?

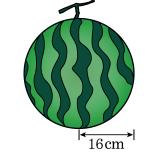


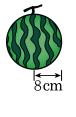
- ① $200\pi\,\mathrm{cm}^2$ $4 262\pi \, \text{cm}^2$
- ② $218\pi \, \text{cm}^2$ \bigcirc 294 π cm²
- $3 240\pi \, \text{cm}^2$

회전수와 톱니의 둘레는 반비례하므로 A:B=7:5(둘레의 비)

(넓이 비) $A: B = 7^2: 5^2 = 49: 25 = A: 150\pi$ $\therefore A = 294\pi (\,\mathrm{cm}^2)$

17. 반지름의 길이가 16cm 인 수박 한 개는 반지름의 길이가 8cm 인 수박 몇 개와 부피가 같은지 구하여라.





▷ 정답: 8<u>개</u>

▶ 답:

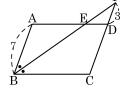
<u>개</u>

반지름의 길이의 비가 2 : 1 이므로 부피의 비는 8 : 1 이다. 따라서 반지름의 길이가 16cm 인 수박 한 개는 반지름의 길이가

해설

8cm 인 수박 8 개의 부피와 같다.

18. 다음 그림과 같은 평행사변형 ABCD에서 $\angle B$ 의 이등분선이 \overline{AD} 와 만나는 점을 E, \overline{CD} 의 연장선과 만나는 점을 F 라고 한다. $\overline{AB}=7$, $\overline{FD}=3$ 일 때, \overline{BC} 의 길이를 구하여라.



답:

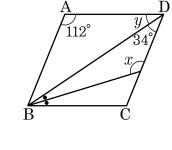
▷ 정답: 10

해설

 $\overline{\mathrm{AB}}//\overline{\mathrm{CF}}$ 이므로 $\angle\mathrm{ABE}=\angle\mathrm{BFC}$ (엇각)이다.

그러므로 삼각형 BCF는 이등변삼각형이다. \overline{BC} 의 길이는 \overline{CF} 의 길이와 같으므로 7+3=10이다.

19. 다음 사각형 ABCD 가 평행사변형이 되도록 $\angle x, \angle y$ 의 값을 구하여라.



▶ 답: **> 정답:** ∠x = 129_°

> 정답: ∠y = 34_^

답:

주어진 조건에 의해서 □ABCD 가 평행사변형이 되려면 112° +

 $\angle y + 34^{\circ} = 180^{\circ}$ 가 성립해야 한다. 따라서 ∠y = 34° 이다. $\overline{\mathrm{AD}}\,/\!/\,\overline{\mathrm{BC}}$ 이므로 ullet = $\frac{34^\circ}{2}$ = 17° 이다.

삼각형의 내각의 합은 180° 이므로 $\angle x = 17^{\circ} + 112^{\circ} = 129^{\circ}$ 이다.

따라서 $\angle x = 129^{\circ}, \ \angle y = 34^{\circ}$ 이다.

20. 다음 설명 중 옳지 <u>않은</u> 것은?

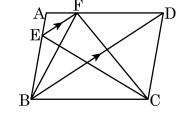
- ① 두 대각선이 서로 다른 것을 이동분하는 사각형은 동변사다리꼴이다.
- ② 두 대각선의 길이가 같은 평행사변형은 직사각형이다.
- ③ 등변사다리꼴의 두 대각선은 길이가 같다.
- ④ 두 대각선이 서로 수직인 평행사변형은 마름모이다.⑤ 두 대각선이 서로 다른 것을 수직이등분하는 평행사변형은
- 마름모이다.

① 두 대각선이 서로 다른 것을 이등분하는 사각형은 평행사변

해설

형이다.

 ${f 21.}$ 다음 그림의 평행사변형 ABCD 에서 ${f BD}//{f EF}$ 일 때, 넓이가 다른 것을 골라라.

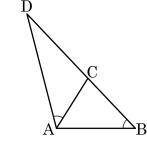


▷ 정답: □

 $\triangle EBD = \triangle EBC$, $\triangle EBD = \triangle FDB = \triangle CFD$

 $\overline{\mathrm{BD}}\,/\!/\,\overline{\mathrm{EF}}$ 임을 이용해야 한다.

22. 다음 그림의 $\triangle ABC$ 의 세 변의 길이는 $\overline{AB}=16, \overline{BC}=14, \overline{CA}=12$ 이다. $\angle \mathrm{DAC} = \angle \mathrm{DBA}$ 일 때, $\overline{\mathrm{DC}}$ 의 길이를 구하여라.



▶ 답:

▷ 정답: 18

△ADC 와 △BDA 에서 ∠D 는 공통,

조건에서 ∠DAC = ∠DBA 이므로 △ADC ∽ △BDA (AA 닮음) 따라서 $\overline{AD} : \overline{BD} = \overline{DC} : \overline{DA} = \overline{AC} : \overline{BA}$ $\overline{\mathrm{AD}}: (\overline{\mathrm{DC}} + 14) = \overline{\mathrm{DC}}: \overline{\mathrm{DA}} = 12: 16 = 3: 4$

 $\overline{AD}: (\overline{DC} + 14) = 3: 4 \cdots \bigcirc$

 $\overline{\mathrm{DC}}:\overline{\mathrm{DA}}=3:4$

 $3\overline{\mathrm{DA}} = 4\overline{\mathrm{DC}}$

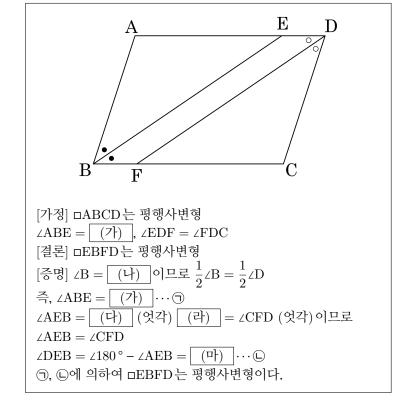
 $\overline{\mathrm{DA}} = rac{4}{3}\overline{\mathrm{DC}}$ 를 \bigcirc 에 대입하여 계산하면 $\frac{4}{3}\overline{\mathrm{DC}}:(\overline{\mathrm{DC}}+14)=3:4$

 $3\overline{\mathrm{DC}} + 14 \times 3 = 4 \times \frac{4}{3}\overline{\mathrm{DC}}$

 $9\overline{\overline{DC}} + 14 \times 9 = 16\overline{\overline{DC}}$

 $7\overline{\mathrm{DC}} = 14 \times 9$ $\therefore \ \overline{\mathrm{DC}} = 18$

 ${f 23.}$ 다음은 평행사변형 ${f ABCD}$ 에서 ${\it \angle B}$, ${\it \angle D}$ 의 이등분선이 ${f AD}$, ${f BC}$ 와 만나는 점을 각각 E, F라 할 때, □EBFD가 평행사변형임을 증명하는 과정이다. (가) ~(마)에 들어갈 것으로 옳지 <u>않은</u> 것은?



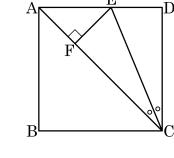
④ (라): ∠EDF ⑤ (마): ∠DFB

③(다): ∠ABE

③ ∠AEB와 ∠EBF는 엇각으로 같다.

① (가): ∠EBF ② (나): ∠D

24. 다음 그림에서 $\square ABCD$ 는 정사각형이고 $\angle ACD$ 의 이등분선이 \overline{AD} 와 만나는 점을 E, 점 E에서 \overline{AC} 에 내린 수선의 발을 F라 하고, $\overline{AD}=10\,\mathrm{cm},\ \overline{AE}=6\,\mathrm{cm}$ 라고 할때, \overline{EF} 의 길이는?



 $\underline{\mathrm{cm}}$

정답: 4<u>cm</u>

▶ 답:

 $\angle FAE = \angle BAC = 45^{\circ}$

해설

 $\therefore \angle AEF = 90^{\circ} - 45^{\circ} = 45^{\circ}$

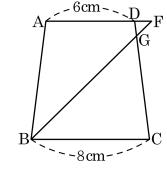
즉, ΔAFE는 ĀF = ĒF 인 이등변삼각형이다. 또, ΔCDE와 ΔCFE에서

∠CDE = ∠CFE = 90°, EC는 공통.

∠DCE = ∠FCE이므로

△CDE ≡ △CFE (RHA 합동) ∴ EF = ED = 10 - 6 = 4

25. 사다리꼴 ABCD에서 $\overline{AD}=6\,\mathrm{cm},\ \overline{BC}=8\,\mathrm{cm}$ 이다. \overline{AD} 의 연장선 위에 점 F를 잡을 때, 선분 BF가 \Box ABCD의 넓이를 이등분한다. 이 때, DF의 길이를 구하여라.



- ① 1 cm ② $\frac{8}{7}$ cm ④ $\frac{10}{7}$ cm

□ABCD의 높이를 h라 할 때, $\Box \text{ABCD} = (8+6) \times h \times \frac{1}{2} = 7h$

 \triangle GBC의 높이를 m이라 할 때,

 $4m = \frac{1}{2} \times 7h, \ m = \frac{7}{8}h, \ m: h = 7:8$

 $\triangle GBC = \frac{1}{2} \times 8 \times m = 4m$

 $\overline{\mathrm{DF}}:\overline{\mathrm{BC}}=1:7$ 이므로 $\overline{\mathrm{DF}}:8=1:7,\;\overline{\mathrm{DF}}=rac{8}{7}\,(\,\mathrm{cm})$