- 1. 다음 중 10 이하의 2 의 배수의 집합을 원소나열법으로 바르게 나타낸
 - ① {2, 4, 6} ② {2, 4, 6, 8}
 - **⑤** {2, 4, 5, 6, 8, 10}
 - ③{2, 4, 6, 8, 10} ④ {2, 4, 6, 8, 10, 12}

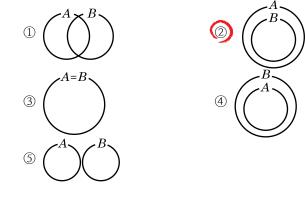
10 이하의 2 의 배수이므로 {2, 4, 6, 8, 10} 이다.

- **2.** 다음 중 공집합인 것은?
 - ① $\{x|x-5=3, x$ 는 짝수 $\}$ ② $\{x|x \vdash x \times 0 = 0$ 인 자연수 $\}$
 - ③ $\{x|x < 1인 자연수\}$
 - ④ {x|x는 2의 약수}

 - ⑤ {x|-1 < x < 1, x는 정수}

③ 1보다 작은 자연수는 없으므로 공집합

3. 두 집합 $A = \{x \mid x \in 6 \text{ eq} \}$, $B = \{2, 3\}$ 의 포함 관계를 벤다이어 그램으로 바르게 나타낸 것은?



 $A = \{1, 2, 3, 6\}, B = \{2, 3\}$ $\therefore B \subset A$

4. 다음 보기 중 옳은 것을 골라라. ==

답:▷ 정답: ©

해설 -

⊙ {0} 은 원소 0을 포함하는 집합이다.

- \bigcirc ϕ 은 모든 집합의 부분집합이다.
- 모든 집합은 자기 자신의 부분집합이다.② 집합 {2,3,4}는 집합 {1} 을 포함하지 않는다.

- 5. 다음 중 집합 $A = \{4, 8, 16\}$ 의 부분집합이 <u>아닌</u> 것은?
 - ① Ø ② A ③ {8} ④ {4,8,12,16} ⑤ {8,16}

해설

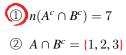
집합 A 의 부분집합을 구하면 Ø, {4}, {8}, {16}, {4,8}, {4,16}, {8,16}, {4,8,16}이다.

- 집합 $A = \{m, a, t, h\}$ 에 대하여 부분집합 중 모음을 원소로 포함하지 6. 않는 부분집합의 개수를 구하여라.
 - ▶ 답: <u>개</u> ▷ 정답: 8개

집합 A에서 모음은 a이므로 집합 A의 부분집합 중 a를 포함하지

않는 부분집합을 구하면 \emptyset , $\{m\}$, $\{t\}$, $\{h\}$, $\{m,t\}$, $\{m,h\}$, $\{t,h\}$, $\{m,t,h\}$ 이고 총 8개이다.

7. 집합 $U = \{1, 2, 3, \cdots, 10\}$ 의 두 부분집합 A, B에 대하여 $A = \{1, 2, 3, 4, 5, 6\}$, $B = \{4, 5, 6, 7, 9\}$ 일 때, 다음 중 옳지 <u>않은</u> 것은? (단, n(A)는 집합 A의 원소의 개수이다.)

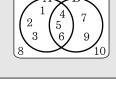


- $\odot n(\Pi \cap B) =$

벤다이어그램으로 나타내면 다음과 같다.

해설

 $| n(A^c \cap B^c) | = n((A \cup B)^c) = 2$



- 8. 전체집합 U 의 두 부분집합 A, B 에 대하여 n(U)=20, n(A)=9, n(B)=7, $n(A^c)=a$, $n(B^c)=b$ 일 때, a+b 의 값은?
 - ① 11 ② 13 ③ 16 ④ 20 ⑤ 24

 $a = n(A^{c}) = n(U) - n(A) = 20 - 9 = 11$ $b = n(B^{c}) = n(U) - n(B) = 20 - 7 = 13$ $\therefore a + b = 11 + 13 = 24$

해설

- 다음 중 명제 ' $x + y \ge 2$ 이고 $xy \ge 1$ 이면, $x \ge 1$ 이고 $y \ge 1$ 이다.' 가 9. 거짓임을 보이는 반례는?

 - ① $x = 1, y = \frac{1}{2}$ ② $x = 100, y = \frac{1}{2}$ ③ x = 1, y = 1 ④ x = 2, y = 4
 - ⑤ x = -1, y = -5

 $x+y\geq 2,\ xy\geq 1$ 는 만족하지만, $x\geq 1,y\geq 1$ 은 만족하지 않는 반례를 찾는다. $\therefore x = 100, y = \frac{1}{2}$ 일 때, 거짓이다.

10. 다음에서 조건 p 는 조건 q이기 위한 어떤 조건인지 구하여라.

p:a,b는 모두 짝수 q:a+b는 짝수

답:

<u>조건</u>

정답: 충분조건

a, b는 모두 짝수 $\rightarrow a + b$ 는 짝수 (역은 성립하지 않음) 증명)

해설

 $a=2m,\ b=2n\ (n,\ m$ 은 자연수) 이면, a+b=2m+2n=2(m+n) 이므로 짝수이다.

한편, a=3, b=3 일 때 a+b=6 이므로 짝수이지만, a, b 는모두 홀수이다.

 $\therefore p 는 q$ 의 충분조건이다.

11. 다음 중 집합인 것은?

- ① 예쁜 어린이들의 모임
- ② 우리 중학교 1 학년 1 반에서 야구를 잘하는 학생들의 모임 ③ 4 와 10000 사이에 있는 자연수의 모임
- ④ 100 에 가까운 수들의 모임
- ① 100 세계전 구글러 또 i
- ⑤ 아주 큰 수들의 모임

집합은 주어진 조건에 대하여 그 대상을 분명히 알 수 있어야

하므로 ③만이 집합이다.

- **12.** 집합 $A = \{x \mid x = 7 \times n 4, n$ 은 자연수 $\}$ 에 대하여 다음 중 옳은 것을 모두 고르면?
- $2 4 \in A$
- ③7 ∉ A

해설

⑤ 17 ∈ *A*

 $A = \{3, 10, 17, \dots\}$

- ② 4 ∉ A
- $4 10 \in A$

- 13. 두 집 합 $A=\{x|x\in 25$ 미만인 5의 배수 $\}$, $B=\{x|x\in 13 < x < 15$ 인 홀수 $\}$ 일 때, n(A)-n(B) 의 값을 구하여라.
 - ▶ 답:

▷ 정답: 4

 $A = \{5, \ 10, \ 15, \ 20\}, \ B = \emptyset$ 이므로 n(A) - n(B) = 4 - 0 = 4

- 14. 집합 $A = \{a, b\}$ 에 대한 설명 중 옳은 것을 모두 고르면? (정답 2 개)
 - ① \emptyset 는 집합 A 의 부분집합이다.
 - ② 원소가 하나뿐인 집합 A 의 부분집합은 1 개이다. ③ 원소가 2 개인 집합A 의 부분집합은 2 개이다.

 - 4 $\{a\}$ 는 집합 A 의 진부분집합이다. ⑤ $\{a, b, c\} \subset A$ 이다.

집합A의 부분집합은 \emptyset , $\{a\}$, $\{b\}$, $\{a,b\}$ 이고, 그 중 진부분집합은

{a, b} 를 제외한 ∅, {a}, {b} 이다.

15. 다음 중 부분집합의 개수가 다른 집합은?

① $\{0, 2, 4\}$ ② $\{\neg, \vdash, 2\}$ ③ $\{\emptyset, a, e\}$ ④ $\{a, b, c, d\}$ ⑤ $\{3, 6, z\}$

해설 ① $2^3 = 8$ (개) ② $2^3 = 8$ (개)

 $3 \ 2^3 = 8 \ (71)$ $2^4 = 16 \ (71)$ $2^3 = 8 \ (71)$

16. 다음 중 옳은 것은?

- ① A ⊂ B 이면, n(A)는 n(B) 보다 작다. ② A ⊂ B 이고, A ≠ B 이면, n(A) = n(B) 이다.
- \bigcirc A = B 이면 n(A) 와 n(B) 는 같다.
- ④ n(A) < n(B) 이면, $A \subset B$ 이다.
- ⑤ $A = \{0, \varnothing\}$ 이면 n(A) = 1 이다.

① 반례 : $A = \{1\}, B = \{1\}$

해설

- ② 반례 : $A = \{1\}$, $B = \{1, 3\}$ ④ 반례 : $A = \{2\}$, $B = \{1, 3\}$
- ④ 반례: $A = \{2\}$, $B = \{1, 3\}$ ⑤ $A = \{0, \emptyset\}$ 이면 n(A) = 2 이다.

17. 세 집합 A = {x | x는 8의 약수}, B = {5,6,7,9,11}, C = {x | x는 12의 약수}에 대하여
(C ∩ A) ∪ B 의 원소 중에서 가장 큰 원소를 구하여라.

답:▷ 정답: 11

V 00.

조건제시법을 원소나열법으로 고쳐보면 $A=\{1,2,4,8\}$, $C=\{1,2,4,8\}$

해설

{1,2,3,4,6,12} 가 된다. 먼저 C 와 A 의 교집합을 구해보면 $C \cap A = \{1,2,4\}$ 이고 B와 합집합을 구하면 $(C \cap A) \cup B = \{1,2,4,5,6,7,9,11\}$ 이 된다. 가장 큰 원소는 11 이다. **18.** 전체집합 U의 두 부분집합 A 와 B에 대하여 $A \cap B^c = A$, n(A) = 9, n(B) = 14일 때, $n(A \cup B)$ 의 값을 구하시오. (단, n(X)는 집합 X의 원소의 개수이다.)

▷ 정답: 23

00. 2

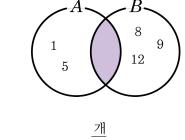
답:

 $A \cap B^c = A - B = A$ 이므로 A, B는 서로소

해설

 $n(A \cap B) = 0, n(A \cup B) = n(A) + n(B) = 23$

19. 다음 벤 다이어그램에서 $A \cup B = \{1, 3, 5, 7, 8, 9, 12\}$ 일 때. 색칠한 부분의 원소의 개수를 구하여라.



▷ 정답: 2<u>개</u>

▶ 답:

색칠한 부분은 집합 A 와 집합 B 의 공통 부분인 교집합에 해당

한다. $A \cup B = \{1, 3, 5, 7, 8, 9, 12\}$ 이므로 벤 다이어그램에 표시되어 있지 않은 원소를 말한다.

그러므로 색칠한 부분의 원소는 3,7 이다. 원소의 개수는 2 개이다.

- **20.** 두 집합 $A = \{a+1,\ 4,\ 5\}$, $B = \{a,\ 3,\ 5\}$ 에 대하여 $A\cap B = \{3,\ 5\}$ 일 때, a 의 값은?
 - ②2 3 3 4 4 5 5 ① 1

 $3 \in A$ 이므로 a+1=3

 $\therefore a = 2$

- ${f 21.}$ 두 집합 $A,\ B$ 에 대하여 $n\left(A\cup B
 ight)=26$ 일 때, $n\left(B
 ight)=15$, $n\left(A\cap B
 ight)=$ 8 이면 n(A) 의 값을 구하여라.

▶ 답: ▷ 정답: 19

해설

 $n(A \cup B) = n(A) + n(B) - n(A \cap B)$ 26 = n(A) + 15 - 8 $\therefore n(A) = 19$

22. 두 집합 A, B에 대하여 A = {x | x는 10 미만의 짝수}, A ∪ B = {1, 2, 3, 4, 5, 6, 8} 일 때, 다음 집합의 원소들의 합을 구하여라.

{x | x ∈ B 그리고 x ∉ A}

 ■ 답:

 □ 정답:
 9

 $\{x \mid x \in B$ 그리고 $x \notin A\} = B - A$

해설

 $A = \{2, 4, 6, 8\}, A \cup B = \{1, 2, 3, 4, 5, 6, 8\}$ 이므로 $B - A = \{1, 3, 5\}$ $\therefore 1 + 3 + 5 = 9$

- **23.** 두 집합 $A=\{1,2,a\}, B=\{5,a+1,2\times a,11\}$ 에 대하여 $A\cap B=\{5\}$ 일 때, $(A-B)\cup (B-A)$ 는?
 - ① {1,2,3} ④ {1,2,6,10}
- ② {1, 2, 5, 8}
- (3) $\{1, 2, 7, 8\}$
- **(5)** {1, 2, 6, 10, 11}

| A∩B = {5} 이므로 a = 5 이다. 따라서 A = {1,2,5},B =

{5,6,10,11} 이므로 (A-B) \cup (B-A) = {1,2} \cup {6,10,11} = {1,2,6,10,11} 이다.

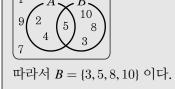
- **24.** $U = \{x | x \vdash 10 \text{ 이하의 자연수}\}$ 의 두 부분집합 A, B 에 대하여 $A B = \{2, 4\}, A \cap B = \{5\}, A^c \cap B^c = \{1, 6, 7, 9\}$ 일 때, 집합 $B \vdash$?
 - ① {3,5} **4** {3, 5, 10}
- ② {5,7} ③ {3,5,8}

해설

(3) {3, 5, 8, 10}

 $U \ = \ \{1,2,3,4,5,6,7,8,9,10\} \ , \ (A^c \cap B^c) \ = \ (A \cup B)^c \ =$

{1,6,7,9} 이므로



- **25.** $A = \{1, 2, 3, 4, 5\}, B = \{1, 2\}$ 에 대하여 $A \cap X = X, (A B) \cup X = X$ 를 만족하는 집합 X 의 개수는?
 - ① 1 개 ② 2 개 ③ 3 개 <mark>④</mark> 4 개 ⑤ 5 개

해설 (4 P

 $(A-B)\subset X\subset A$, 즉 $\{3,4,5\}\subset X\subset \{1,2,3,4,5\}$ 이므로 집합 X 의 개수는 $2\times 2=4($ 개) 이다.

- **26.** 실수 x 에 대하여 x+1=0이 $x^2+2x+a=0$ 이 되기 위한 충분조건일 때, 상수 a 의 값은?
- ①1 ② 2 ③ 3 ④ 4 ⑤ 5

해설 x+1=0이 $x^2+2x+a=0$ 이 되기 위한 충분조건이므로 명제

x + 1 = 0 이면 $x^2 + 2x + a = 0$ 이다.' 가 참이다. x+1=0 에서 x=-1 을 $x^2+2x+a=0$ 에 대입하면 $(-1)^2 + 2 \cdot (-1) + a = 1 - 2 + a = 0$ $\therefore a = 1$

- **27.** a > b > c > 0일 때, $A = \frac{c}{b-a}$, $B = \frac{a}{b-c}$, $C = \frac{b}{a-c}$ 의 대소를 바르게 비교한 것은?
 - ① A < B < C ② A < C < B ③ B < C < A ④ B < A < C

a > b > c > 0에서 b - a < 0, b - c > 0, a - c > 0이므로 $A = \frac{c}{b - a} < 0, B = \frac{a}{b - c} > 0$

 $C = \frac{b}{a - c} > 0$

 $B - C = \frac{a}{b - c} - \frac{b}{a - c} = \frac{a(a - c) - b(b - c)}{(b - c)(a - c)}$ $a^{2} - ac - b^{2} + bc$

 $= \frac{a^2 - ac - b^2 + bc}{(b - c)(a - c)}$ (a - b)(a + b) - c(a - b)

 $= \frac{(a-b)(a+b) - c(a-b)}{(b-c)(a-c)}$ $= \frac{(a-b)(a+b-c)}{(b-c)(a-c)} > 0$

따라서 A < 0, B > C > 0이므로 B > C > A이다.

28. 석훈이네 아파트 한 동에는 전체 350 가구가 살고 있다. 이 중에서 우유를 배달시키는 집은 250가구, 요구르트를 배달시키는 집은 160 가구, 우유나 요구르트를 배달시키는 집은 310가구 일 때, 요구르트만 배달시키는 가구 수를 구하여라.

□ 답: <u>가구</u>

정답: 60 <u>가구</u>

- 해설 우유를 배달시키는 집의 집합을 A, 요구르트를 배달시키는 집의

집합을 B라 하자. $n(U)=350, \ n(A)=250, \ n(B)=160, \ n(A\cup B)=310$

 $n(A \cup B) = n(A) + n(B) - n(A \cap B)$ 310 = 250 + 160 - n(A \cap B)

 $n(A \cap B) = 100$

 $n(B-A) = n(B) - n(A \cap B) = 160 - 100 = 60$

- **29.** 실수 x, y, z 에 대하여 조건 ' $x^2 + y^2 + z^2 = 0$ '의 부정과 서로 같은

① x = y = z = 0

- ② x = 0 또는 y = 0 또는 z = 0③ $x \neq 0$ 이고 $y \neq 0$ 이고 $z \neq 0$
- ④ $x \neq 0$ 또는 $y \neq 0$ 또는 $z \neq 0$

 $x^2 + y^2 + z^2 = 0$ 의 부정은 $x^2 + y^2 + z^2 \neq 0$ 이다.

해설

 $\therefore x \neq 0 \stackrel{\leftarrow}{\Sigma} y \neq 0 \stackrel{\leftarrow}{\Sigma} z \neq 0$

30. 다음 보기 중 참인 명제를 <u>모두</u> 고르면?

- ① $x^2 + y^2 = 0$ 이면 x = 0 이고 y = 0 이다. (단, x, y는 실수) ② x + y, xy 가 모두 실수이면 x, y 도 모두 실수이다.
- ③ 자연수 n 에 대하여 n^2 이 홀수이면 n 도 홀수이다.
- ④ x+y>1 이면 x>1 이고 y>1 이다.
- ⑤ x 가 16 의 약수이면 x 는 8 의 약수이다.

① 실수 범위에서 x=0 , y=0 일 경우에만 성립하므로 참이다.

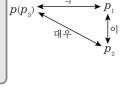
- ③ 홀수끼리 곱하면 항상 홀수가 나오므로 참이다.

- **31.** 명제 '-1 < x < 2 이면 a 2 < x < a + 2 이다.' 가 참일 때, 상수 a 의 값의 범위는?
 - ① 0 < a < 1 ② ③ a < 0 ④
- $20 \le a \le 1$ $4 \quad a \ge 1$
 - ⑤ a < 0 또는 a > 1

명제 '-1 < x < 2 이면 a - 2 < x < a + 2이다.' 가 참이 되려면 $\{x \mid -1 < x < 2\} \subset \{x \mid a - 2 < x < a + 2\}$ 이어야 하므로 다음 그림에서 $a - 2 \le -1, a + 2 \ge 2$ $\therefore 0 \le a \le 1$

- $oldsymbol{32}$. 명제 p 의 역을 p_1 , p_1 의 이를 p_2 , p_2 의 대우를 p_3 이라고 하자. 다음 중 명제 *p* 와 같은 것은?
 - ① p₂ 의 역 ② p₂ 의 이
- $\textcircled{3}p_2$ 의 대우
- ④ p₃ 의 역 ⑤ p₃ 의 대우

 p, p_1, p_2, p_3 의 관계는 그림을 그려서 생각하면 편리하다. 예를 들어 명제를 $p \to q$ 를 p로 두면 p_1 은 $q \to p$ 이고, p_2 는 $\sim q \to \sim p$ 이고, p_3 는 $p \to q$ 이다.



- **33.** 명제 $p \rightarrow q$ 가 참일 때, $p \Rightarrow q$ 로 나타내기로 한다. 명제 p, q, r, s가 다음의 조건을 만족할 때, 다음 중 옳지 <u>않은</u> 것은?
 - \bigcirc $\sim r \Rightarrow \sim q$ \bigcirc $s \Rightarrow p$

해설 _

네 명제 p, q, r, s를 정리하면

 $p \Rightarrow q, q \Rightarrow r, s \Rightarrow p, q \Rightarrow s$ 즉, $p \Rightarrow q \Rightarrow r, p \Rightarrow q \Rightarrow s$ 이므로 옳지 않은 것은 ③ 이다.

34. 다음 보기 중 $a^2 + b^2 \neq 0$ 과 동치인 것을 모두 고르면? (단, a, b는 실수)

> $a^2 + b^2 = 0$ © a ≠ 0 또는 b ≠ 0 ② $a+b \neq 0$ 이고 ab=0 \bigcirc $ab \neq 0$

 \bigcirc ④ つ, ∟

2 🗅 (5) (L), (D) 3 🗈

해설 $a^2 + b^2 \neq 0$ 은 a, b중 적어도 하나는 0 이 아니므로 $a \neq 0$ 또는

b ≠ 0 이다. $\bigcirc a^2 + b^2 = 0$ 이면 a = 0 이고 b = 0 이다.

② $a+b \neq 0$ 이고 ab=0 이면 a, b 둘 중에 하나는 0이 아니다.

⑤ $a^2+b^2>0$ 이면 $a\neq 0$ 또는 $b\neq 0$ 이다. 따라서 $a^2+b^2\neq 0$ 과 동치인 것은 ①, @이다.

- ${f 35}$. 전체집합 U 에 대하여 두 조건 p,q 를 만족하는 집합을 각각 P,Q 라 할 때, $P - Q = \emptyset$ 이면 다음 중 항상 옳은 것은?
 - ① $p \leftarrow q$ 이기 위한 필요충분조건이다. ② $p \leftarrow q$ 이기 위한 필요조건이다.

 - ③p 는 q 이기 위한 충분조건이다. ④ $p \leftarrow q$ 이기 위한 필요조건이다.
 - ⑤ $p \leftarrow q$ 이기 위한 충분조건이다.

 $P-Q=\emptyset$ 이면 $P\subset Q$ 이므로 $p\leftarrow q$ 이기 위한 충분조건이다.

해설

36. 다음 중 옳은 것을 고르면?

- ① a > 0, b > 0 이면 $\sqrt{a} + \sqrt{b} > \sqrt{a+b}$ ② 모든 실수 a, b 에 대하여 |a| + |b| > a + b
- ③ 모든 실수 a, b 에 대하여 $a^2 + b^2 > ab$
- ④ 모든 실수 *a, b* 대하여 |*a b*| ≤ |*a*| |*b*|
- (5) a > b > 0 일 때, $\sqrt{a-b} < \sqrt{a} \sqrt{b}$

① : $\sqrt{a} + \sqrt{b} > \sqrt{a+b}$, 양변을 제곱하면

해설

- $\begin{vmatrix} a+b+2\sqrt{ab} > a+b \\ \Rightarrow 2\sqrt{ab} > 0 \text{ (Å)} \end{vmatrix}$
- ② ④ ⑤ : 모두 양변을 제곱하여 정리해 본다.
- ③ : (반례) a=0, b=0

37. $a \ge 0, \ b \ge 0$ 일 때, $\frac{a+b}{2}$ (개) \sqrt{ab} 임을 다음과 같은 과정으로 증명을 하였다. 이 과정에서 (개, (내, 따)에 알맞은 것을 순서대로 쓴 것을 고르

 $\frac{a+b}{2} - \sqrt{ab} = \frac{(\operatorname{H}^2}{2}$ 이므로 부등식 $\frac{a+b}{2}$ $(\operatorname{H})\sqrt{ab}$ 이 성립함을 알 수 있다. 이 때, 등호는 (대일 때 성립한다.

② \geq , a - b, a = b = 0③ >, $\sqrt{a} - \sqrt{b}$, a = b ④ >, a - b, a = b

 \bigcirc \geq , $\sqrt{a} - \sqrt{b}$, $a \geq b$

 $\left(\sqrt{\frac{a}{2}} - \sqrt{\frac{b}{2}}\right)^2 = \frac{a}{2} - 2\sqrt{\frac{a}{2} \times \frac{b}{2}} + \frac{b}{2}$ $= \frac{a+b}{2} - \sqrt{ab}$ (개 , 내의 결과에서 $\frac{a+b}{2} - \sqrt{ab} \ge 0$ 이므로 $\frac{a+b}{2} \ge \sqrt{ab}$ $\text{(L)} \left(\sqrt{\frac{a}{2}} - \sqrt{\frac{b}{2}}\right)^2 \ge 0 \text{ odd}$ 등호가 성립할 때는 $\sqrt{\frac{a}{2}}$ $-\sqrt{\frac{b}{2}}=0$ 일 때이므로 등호는 a = b일 때 성립한다.

38. x > 0, y > 0, $xy = \frac{9}{2}$ 일 때 5x + 10y 의 최솟값을 구하여라.

▶ 답:

▷ 정답: 30

 $5x + 10y \ge 2\sqrt{50xy}$ 그런데 $2\sqrt{50xy} = 2\sqrt{50 \times \frac{9}{2}}$ $= 2\sqrt{25 \times 9} = 2 \times 15 = 30$

따라서 구하는 최솟값은 30

39. a > 0, b > 0, c > 0일 때, $\frac{2b}{a} + \frac{2c}{b} + \frac{2a}{c}$ 의 최소값을 구하여라.

▶ 답:

▷ 정답: 6

산술-기하평균 부등식에 의해, $\frac{2b}{a} + \frac{2c}{b} + \frac{2a}{c} \ge 3 \cdot \sqrt[3]{\frac{2b}{a} \times \frac{2c}{b} \times \frac{2a}{c}} = 3 \times 2 = 6$ $\therefore \frac{2b}{a} + \frac{2c}{b} + \frac{2a}{c} \ge 6$

- **40.** 두 실수 x, y의 제곱의 합이 10일 때, x + 3y의 최댓값을 M, 최솟값을 m이라 한다. 이 때, M m의 값을 구하여라.
 - 다:

.

▷ 정답: 20

코시-슈바르츠 부등식에 의해

 $(1^2 + 3^2)(x^2 + y^2) \ge (x + 3y)^2$ $x^2 + y^2 = 10$ 이므로 $100 \ge (x + 3y)^2$

 $∴ -10 \le x + 3y \le 10$ ∴ M = 10, m = -10

- $\therefore M m = 10 (-10) = 20$

- 41. 집합 $U = \{1, 2, 3, \cdots, 99, 100\}$ 이다. 다음 U의 부분집합 A중 아래 조건 \bigcirc 와 \bigcirc 를 만족시키며 원소의 개수가 가장 적은 것은?
 - ① $3 \in A$ $\bigcirc m, n \in A$ 이고 $m+n \in U$ 이면, $m+n \in A$ 이다.
- ② A= $\{1, 3, 5, \dots, 99\}$ ④ A= $\{3, 6, 9, \dots, 99\}$

① $A=\{1, 2, \cdots, 100\}$

- (0, 0, 0, 0, , , , 0,

$3 \in A, \ 3+3 \in A, \ 3+3+3 \in A, \ \cdots$ 이므로 U의 원소 중 3의

해설

배수가 된다. 따라서 원소의 개수가 가장 적은 A 는 ④ 42. 집합 $A=\{0,\ 1,\ \{0,\ 1\}\}$ 에 대하여 집합 P(A)를 $P(A)=\{X\mid X\subset A\}$ 로 정의하자. 이 때, $P_1(A)=P(A)$, $P_2(A)=P(P_1(A))$ 라 하면, $P_2(A)$ 의 원소의 개수는?

④ 256 개

① 32개

- ② 64개 ③ 512개
- ③ 128개

@ 01**2** II

 $n(A) = 3, n(P_1(A)) = 2^3 = 8$ $\therefore n(P_2(A)) = 2^8 = 256$

해설

- **43.** 두 집합 $A = \{2, 3, a, 7, b, 13, c\}, B = \{x \mid x 는 d 이하의 소수\} 에$ 대하여 A=B 일 때, 다음 중 a+b+c+d 의 값으로 옳은 것을 모두 고르면?
 - **3**50 **4** 51 ① 48 ② 49 ⑤ 52

집합 A 의 원소의 개수가 7개이므로 집합 $A = \{2, 3, 5, 7, 11, 13, 17\}$ i) d=17, ii) d=18인 두 가지 경우가 있으므로

해설

5+11+17+17=50, 5+11+17+18=51이다.

- 44. 두 집합 $A = \{2, 4, 6, 8, 10\}, B = \{4, 10\}$ 에 대하여 $A \cap X = X$, $B \cup X = X$ 를 만족하는 집합 X의 개수를 구하여라.
 - ▶ 답: <u>개</u>

▷ 정답: 8개

 $X \subset A$

해설

즉, $\{4, 10\} \subset X \subset \{2, 4, 6, 8, 10\}$ 따라서 집합 X는 집합 A의 부분집합 중 원소 4, 10을 반드시

 $A\cap X=X$ 이므로 $X\subset A,\ B\cup X=X$ 이므로 $B\subset X$... $B\subset$

포함하는 집합이므로 개수는 $2^{5-2} = 2 \times 2 \times 2 = 8$ (개)이다. **45.** 공집합이 아닌 두 집합 A, B 에 대하여 $A - B = \emptyset$, $B - A = \emptyset$ 이고, 집합 $A \cap B$ 의 모든 원소의 합이 10 일 때, 집합 A 의 모든 원소의 합을 구하여라.

▷ 정답: 10

▶ 답:

 $A - B = \emptyset$, $B - A = \emptyset$, $\rightarrow A = B$,

 $\to A \cap B = A = B ,$

 $A \cap B$ 의 모든 원소의 합이 10 이므로, 집합 A 의 모든 원소의 합은 10

- ${f 46}$. 전체집합 U 의 공집합이 아닌 두 부분집합 A,B 에 대하여 $\left(A\cap B^C\right)\cup$ $\left(B\cap A^{C}\right)=\varnothing$ 일 때, $n\left(A\right)-n\left(B\right)$ 와 같은 값을 모두 고르면? (정답 3개)
 - $\bigcirc n\left((A\cup B)-n\left(A\cap B\right)\right) \qquad \bigcirc n\left(\varnothing\right)$ $\bigcirc n(B) - n(A)$

 \bigcirc n(B)

4 n(A)

 $\left(A\cap B^{\mathcal{C}}\right)\cup\left(B\cap A^{\mathcal{C}}\right)=(A-B)\cup\left(B-A\right)=\varnothing$ 이므로 $A-B=\varnothing$, $B-A=\emptyset$ 이다. 따라서 $A \subset B$, $B \subset A$ 이므로 A = B 이다.

따라서 n(A) - n(B) = 0 이코, ① $n((A \cup B) - n(A \cap B)) = 0$

③ n(B) - n(A) = 0이다.

47. 임의의 두 집합 X, Y 에 대하여 연산 \odot 을 $X \odot Y = (X \cup Y) \cap (X^c \cup Y^c)$ 로 정의하자. 1에서 30까지의 자연수 중 2의 배수, 3의 배수, 5의 배수의 집합을 각각 A, B, C 라고 할 때, $(A \odot B) \odot C$ 의 원소의 개수는?

② 12개 ③ 13개 ⑤ 15개 ① 11개 ④ 14개

 $(X \cup Y) \cap (X^c \cup Y^c) = (X \cup Y) \cap (X \cap Y)^c$ $= (X \cup Y) - (X \cap Y)$

 $= (X - Y) \cup (Y - X)$ 이 정의로부터 $(A \odot B) \odot C$ 를 벤 다이어그램으로 나타내면 다음과

같다.

해설

 $B \cap C$ 는 15의 배수의 집합, $C \cap A$ 는 10의 배수의 집합,

 $A \cap B \cap C$ 는 30의 배수의 집합이므로

 $n(A \cap B \cap C) = 1$

 $n(A) = 15, \ n(B) = 10, \ n(C) = 6,$ $n(A \cap B) = 5, \ n(B \cap C) = 2, \ n(C \cap A) = 3,$

 $\therefore n\left\{(A\otimes B)\otimes C\right\} = n(A) + n(B) + n(C)$ $-2\left\{n(A\cap B)+n(B\cap C)+n(C\cap A)\right\}$

 $+ \ 4 \cdot n(A \cap B \cap C)$

= 15 + 10 + 6 - 2(5 + 2 + 3) + 4=15

- 48. 실수 x에 대하여 두 조건 $p:a\leq x\leq 1,\ q:x\geq -1$ 이 있다. 명제 $p \rightarrow q$ 를 참이 되게 하는 상수 a 의 범위는?
 - ⓐ $a \ge -1$ ⑤ $a \le -1$
 - ① a > 1 ② $a \le 1$ ③ $-1 \le a \le 1$

조건 p, q 의 진리집합을 각각 P, Q라 하자. (i) a>1일 때, $P=\varnothing$ 이므로 $P\subset Q$.: a>1(ii) $a \le 1$ 일 때, 수직선에 나타내면

 $\therefore -1 \le a \le 1$ (i), (ii)에서 $a \ge -1$

49. 다음은 명제 'xy 가 3의 배수이면 x, y 중 적어도 하나는 3의 배수이다.(단, x, y 는 정수이다.)' 가 참임을 대우를 이용하여 증명한 것이다. (가)~(마)에 들어갈 말로 <u>틀린</u> 것은?

주어진 명제의 대우는 (x, y)가 모두 (y)가 아니면 (xy)는 (y)

가 아니다.' 이다.이것이 참임을 보이자.

x, y 가 모두 (나)가 아니면 x, y 를 각각 x = 3m±1, y = 3n±1
(단, m, n 은 정수)로 나타낼 수 있다.
이때, (다) = (3m±1)(3n±1)
= 9mn±3m±3n+1
= 3(3mn±m±n)+1

또는 (다) = (3m±1)(3n ∓ 1)
= 9mn ∓ 3m±3n-1
= 3(3mn ∓ m±n)-1
이다. 그리고 m, n 이 정수이므로
3mn±m±n, 3mn ∓ m±n 도 정수이다.
따라서, (다)는 3의 배수가 아니다. 즉, 주어진 명제의 대우는
(라)이다.
그러므로 주어진 명제는 (마)이다.

④ (라) 참 ⑤ (마) 거짓

① (가) 3의 배수 ② (나) 3의 배수 ③ (다) xy

해설

대우가 참이므로 명제 역시 참이다.

50. *a*, *b*, *c*, *d*, *x*, *y*, *z*가 실수일 때, 다음 보기 중 옳은 것을 모두 골라라.(단, 순서대로 쓸 것)

 $a^2 + b^2 \ge ab$ $a^2 + b^2 + 1 < 2(a + b - 1)$ $(a^2 + b^2 + c^2)(x^2 + y^2 + z^2) \le (ax + by + cz)^2$ $|a + b| \le |a| + |b|$ $|a| - |b| \ge |a - b|$ $|a + b| \ge |a| - |b|$

▶ 답:

▶ 답:

 ▷ 정답: ⑤

 ▷ 정답: ⑥

 ▷ 정답: 由

 $\therefore a^2 + b^2 \ge ab$: 맞음 © $a^2 + b^2 + 1 - 2(a + b - 1)$ = $a^2 - 2a + b^2 - 2b + 3$ = $(a - 1)^2 + (b - 1)^2 + 1 > 0$ $\therefore a^2 + b^2 + 1 > 2(a + b - 1)$: 틀림

부등식의 증명 : 좌변에서 우변을 뺀 값의 부호 결정한다.

 $= (a - \frac{1}{2})^2 + \frac{3}{4}b^2 \ge 0$

 $= a^{2}x^{2} + a^{2}y^{2} + a^{2}z^{2} + b^{2}x^{2}$ $+b^{2}y^{2} + b^{2}z^{2} + c^{2}x^{2} + c^{2}y^{2} + c^{2}z^{2} - (a^{2}x^{2} + b^{2}y^{2} + c^{2}z^{2} + 2abxy + 2bcyz + 2cazx)$ $= (ay - bx)^{2} + (az - cx)^{2} + (bz - cy)^{2} \ge 0$

∴ $(a^2 + b^2 + c^2)(x^2 + y^2 + z^2) \ge (ax + by + cz)^2$: 틀림

② 제곱의 차를 구해본다. (우변에서 좌변을 뺀 값) $(|a|+|b|)^2-|a+b|^2 \\ = a^2 2|ab|+b^2-(a^2+2ab+b^2)$

 \bigcirc $(a^2 + b^2 + c^2)(x^2 + y^2 + z^2) - (ax + by + cz)^2$

① 제곱의 차 비교 $(|a| - |b|)^2 - |a - b|^2$ $= a^2 - 2|ab| + b^2 - (a^2 - 2ab + b^2)$

 $= 2|ab| - 2ab \ge 0(\because |ab| \ge ab)$ ∴ $|a| + |b| \ge |a + b|$: 맞음

∴ $|a| - |b| \le |a - b|$: 틀림 ⊕ $|a + b|^2 - (|a| - |b|)^2$ $= a^2 + 2ab + b^2 - (a^2 - 2|ab| + b^2)$

 $= -2|ab| + 2ab \le 0 \big(\because |ab| \ge ab\big)$

 $=2ab+2|ab| \ge 0$ ∴ $|a+b| \ge |a|-|b|$: 맞음