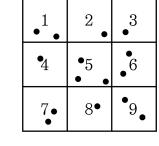
1. 다음 그림과 같이 1 부터 9 까지 숫자가 쓰여진 표적에 영수가 15 발의 사격을 하였다. 영수가 받은 점수 중 중앙값과 최빈값을 구하여라.



▶ 답:

▶ 답:

▷ 정답: 중앙값: 5

➢ 정답: 최빈값: 5

크기순으로 나열하면

해설

1,1,2,3,4,5,5,5,6,6,7,7,8,9,9이므로 중앙값은 5이고 최빈값은 5이다.

- 다음 자료들 중에서 표준편차가 가장 작은 것은? 2.
 - ① 1, 3, 1, 3, 1, 1, 1, 1 ② 2, 4, 2, 4, 2, 4, 2, 4 3 2, 4, 2, 4, 2, 4, 4, 4
 - **4**1, 1, 1, 1, 1, 1, 1
 - ⑤ 1, 3, 1, 3, 1, 3, 1, 3

표준편차는 자료가 흩어진 정도를 나타내므로 주어진 자료들

중에서 표준편차가 가장 작은 것은 ④이다.

3. 다음 그림과 같이 한 변의 길이가 11cm 인 A 정사각형의 대각선의 길이를 구하여라.

 $\underline{\mathrm{cm}}$

D 11cm B^{l}

> 정답: 11√2 cm

▶ 답:

 $\sqrt{2}a$ 이므로 한 변의 길이가 $11(\mathrm{cm})$ 인 정사각형의 길이는 $11\sqrt{2}$ (cm) 이다.

한 변의 길이가 a 인 정사각형의 대각선의 길이는

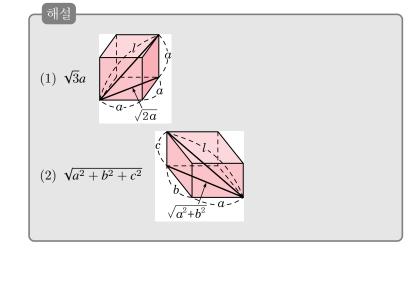
- 4. 세 모서리의 길이가 각각 $7\,\mathrm{cm}, 8\,\mathrm{cm}, 11\,\mathrm{cm}$ 인 직육면체의 대각선의 길이를 구하여라.
 - <u>cm</u>

 > 정답:
 3√26 cm

해설

 $\sqrt{7^2 + 8^2 + 11^2} = \sqrt{49 + 64 + 121}$ = $3\sqrt{26}$ (cm)

- 5. 다음 입체도형을 보고 두 도형의 대각선의 길이를 바르게 짝지은 것을 고르면?
 - (1)
 - $(2) \qquad \qquad (2)$
 - ③ (1) $\sqrt{2}a$, (2) $\sqrt{a^2 + b^2 + c^2}$ ④ (1) $\sqrt{3}a$, (2) $\sqrt{a^2 + b^2 + c^2}$
- ① (1) $\sqrt{2}a$, (2) $\sqrt{a^2 + b^2 c^2}$ ② (1) $\sqrt{2}a$, (2) $\sqrt{a^2 b^2 c^2}$
 - $(1) \sqrt{3}a, (2) \sqrt{a^2 b^2 + c^2}$
- (=) (=) (=)



- 6. 다음은 미희의 5 회의 미술 실기 경수를 나 점수(점) 1 2 3 4 점수(점) 70 80 75 85 타낸 표이다. 다음 시험에서 몇점을 받아야 평균이 80 점이 되겠는가?
 - ① 80 점 ② 85 점 ③ 90 점 ④ 95 점 ⑤ 100 점
 - 해설 다음에 받아야 할 점수를 x 점이라고 하면 $(평균) = \frac{70 + 80 + 75 + 85 + x}{5} = 80, \quad \frac{310 + x}{5} = 80, \quad 310 + x = 400$ $\therefore x = 90($ 점)

5
x = 400
∴ x = 90(점)
따라서 90 점을 받으면 평균 80 점이 될 수 있다.

7. 다음은 5 명의 학생의 50m 달리기 결과의 편차를 나타낸 표이다. 이 5 명의 50m 달리기 결과의 평균이 7점 일 때, 영진이의 성적과 표준편차를 차례대로 나열한 것은?

이듬	윤숙	태경	혜진	노경	영진
편차(점)	-1	1.5	х	0.5	0

① 5점, $\sqrt{0.8}$ kg ② 6점, $\sqrt{0.9}$ kg ③ 6점, 1kg ④ 7점, $\sqrt{0.9}$ kg ⑤ 8점, 1kg

영진이의 성적은 7 - 0 = 7(점) 또한, 편차의 합은 0 이므로 -1 + 1.5 + x + 0.5 + 0 = 0, x + 1 = 0 $\therefore x = -1$

따라서 분산이

 $\frac{(-1)^2 + 1.5^2 + (-1)^2 + 0.5^2 + 0^2}{5} = \frac{4.5}{5} = 0.9$ 이므로 표준편차는 $\sqrt{0.9}\,\mathrm{kg}$ 이다.

네 수 a, b, c, d의 평균과 분산이 각각 10, 5일 때, $(a-10)^2+(b-10)^2+(c-10)^2+(d-10)^2$ 의 값은? 8.

① 5

② 10

③ 15

4 20

 \bigcirc 25

네 수 a, b, c, d 의 평균이 10 이므로 각 변량에 대한 편차는 a-10, b-10, c-10, d-10 이다. 따라서 분산은

$$\frac{(a-10)^2 + (b-10)^2 + (c-10)^2 + (d-10)^2}{4} = 5$$

$$\therefore (a-10)^2 + (b-10)^2 + (c-10)^2 + (d-10)^2 = 20$$

- 9. 다음은 A 반 1 분단 학생들의 기말고사 (명)∱ 수학 성적을 조사하여 나타낸 히스토그램 이다. 학생들 10 명의 수학 성적의 분산 은? 45 55 65 75 85 95(점)
 - **4** 144 ② 121 ③ 132 ① 108 **⑤** 156

같다. 계급값 도수 (계급값)×(도수)

주어진 히스토그램을 이용하여 도수분포표로 나타내면 다음과

			(" — — , (
	50	2	100				
·	60	3	180				
	70	3	210				
	80	1	80				
·	90	1	90				
	계	12	660				
학생들의 수학성적의 평균은							

(평균)

해설

 $=\frac{\left\{ \left(\operatorname{계급값}\right) \times \left(\operatorname{도} \div \right) \right\} \operatorname{의 \, \mathring{s}} \overset{}{\operatorname{b}}}{\left(\operatorname{\Sigma} \div \right) \operatorname{의 \, \mathring{s}} \overset{}{\operatorname{b}}}$ $=\frac{660}{10}=66(점)$

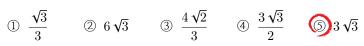
따라서 구하는 분산은
$$\frac{1}{10} \left\{ (50 - 66)^2 \times 2 + (60 - 66)^2 \times 3 + (70 - 66)^2 \times 3 + (80 - 66)^2 \times 3 + (80$$

$$66)^2 \times 1 + (90 - 66)^2 \times 1$$

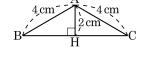
$$= \frac{1}{10}(512 + 108 + 48 + 196 + 576) = 144 \,\text{or}.$$

(넓이) = $\frac{\sqrt{3}}{4}a^2 = 9\sqrt{3}$ 이므로 $a^2 = 36$ ∴ a = 6(높이) = $\frac{\sqrt{3}}{2}a = \frac{\sqrt{3}}{2} \times 6 = 3\sqrt{3}$

$$4 \frac{3\sqrt{3}}{2}$$



11. 다음 그림의 $\overline{AB} = \overline{AC} = 4 \text{ cm}$ 인 이등변삼 각형 ABC 에서 $\overline{AH} \perp \overline{BC}$, $\overline{AH} = 2 \text{ cm}$ 일 때, \overline{BC} 의 길이를 구하면?



 $4 2\sqrt{3} \text{ cm}$

① $5\sqrt{3}$ cm

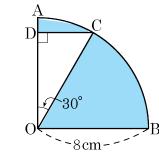
 $3\sqrt{3}$ cm

해설

© 100m

 $\overline{\mathrm{BH}} = \sqrt{4^2 - 2^2} = 2\sqrt{3}(\mathrm{\,cm}) : \overline{\mathrm{BC}} = 4\sqrt{3}(\mathrm{\,cm})$

12. 다음 그림과 같이 반지름의 길이가 $8 \mathrm{cm}$ 인 사분원에서 $\angle \mathrm{COA} = 30\,^\circ$ 이고 $\overline{\mathrm{CD}} \bot \overline{\mathrm{OA}}$ 일 때, 색칠한 부분의 넓이는 ?



 $(3) (15\pi - 9\sqrt{3}) \text{cm}^2$

① $(15\pi - 7\sqrt{3})$ cm²

- ② $(15\pi 8\sqrt{3})$ cm² ④ $(16\pi - 7\sqrt{3})$ cm²
- $(16\pi 8\sqrt{3}) \text{cm}^2$

사분원의 넓이 = $8^2\pi \times \frac{1}{4} = 16\pi (\text{cm}^2)$

 $\triangle ODC$ 에서 $\overline{OC}: \overline{DC}: \overline{DO}=2:1:\sqrt{3}$ $\overline{OD}=4\sqrt{3}\mathrm{cm}$, $\overline{CD}=4\mathrm{cm}$

 $\triangle ODC = \frac{1}{2} \times 4\sqrt{3} \times 4 = 8\sqrt{3}$

² 색칠한 부분의 넓이 = (16π − 8 √3)cm²

- **13.** 두 점 P(2, 2), Q(a, -1) 사이의 거리가 $3\sqrt{5}$ 일 때, a 의 값은? (단, 점 Q 는 제3 사분면의 점이다.)
 - ① -8 ② -6 ③ -4 ④ 4 ⑤ 8

 $\sqrt{(2-a)^2+3^2}=3\sqrt{5}$ 에서 a=-4, 8 이다. 점 Q 는 제3 사분면 위에 있으므로 $a<0,\ a=-4$ 이다.

해설

14. 다음 표는 어느 중학교 2학년 학생들의 2학기 중간고사 영어 시험의 결과이다. 다음 설명 중 옳은 것은?

학급 1반 2반 3반 4반

7 10	1 1	2 L	O L	1 1
평균(점)	70	73	80	76
표준편차(점)	5.2	4.8	6.9	8.2

- 각 반의 학생 수를 알 수 있다.
 90점 이상인 학생은 4반이 3반 보다 많다.
- ③ 3반에는 70점 미만인 학생은 없다.
- ④2반 학생의 성적이 가장 고르다.
- ⑤ 4반이 평균 가까이에 가장 밀집되어 있다.

표준편차가 가장 작은 반이 2반이므로 성적 분포가 가장 고른 반은 2반이다.

15. 4개의 변량 a,b,c,d의 평균이 10이고, 표준편차가 3일 때, 변량 a+5,b+5,c+5,d+5의 평균과 표준편차를 차례로 나열하여라.

 ■ 답:

 ■ 답:

➢ 정답 : 표준편차 : 3

➢ 정답 : 평균 : 15

평균: $1 \cdot 10 + 5 = 15$ 표준편차: $|1| \cdot 3 = 3$

해설

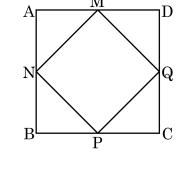
16. 다음은 학생 8 명의 국어 시험의 성적을 조사하여 만든 것이다. 이 분포의 분산은?

계급	도수
55 ^{이상} ~ 65 ^{미만}	3
65 ^{이상} ~ 75 ^{미만}	a
75 ^{이상} ~ 85 ^{미만}	1
85 ^{이상} ~ 95 ^{미만}	1
합계	8

① 60 ② 70 ③ 80 ④ 90 ⑤ 100

계급값이 60 일 때의 도수는 a=8-(3+1+1)=3 이므로 이 분포의 평균은 (평균) $=\frac{\left\{(계급값)\times(\Sigma +)\right\} 의 총합}{(\Sigma +) 의 총합}$ $=\frac{60\times3+70\times3+80\times1+90\times1}{8}$ $=\frac{560}{8}=70(점)$ 따라서 구하는 분산은 $\frac{1}{8}\left\{(60-70)^2\times3+(70-70)^2\times3+(80-70)^2\times1+(90-70)^2\times1\right\}$ $=\frac{1}{8}(300+0+100+400)=100$ 이다.

17. 다음 그림과 같이 정사각형 ABCD 의 각 변의 중점들을 연결하여 정사각형 MNPQ를 그렸다. 정사각형 ABCD 의 넓이가 $36 \mathrm{cm}^2$ 일 때, $\overline{\mathrm{MN}}$ 의 길이를 구하여라.



 $\underline{\mathrm{cm}}$

ightharpoonup 정답: $3\sqrt{2}$ $\underline{\mathrm{cm}}$

▶ 답:

정사각형 ABCD 의 넓이가 36cm^2 이므로 한 변의 길이는 6 cm

해설

그러므로 $\overline{\rm AM}=3{\rm cm}$, $\overline{\rm AN}=3{\rm cm}$, $\overline{\rm MN}=\sqrt{3^2+3^2}=\sqrt{18}=$ $3\sqrt{2}(cm)$

- 18. 다음 그림에서 직사각형 ABCD 의 점 A 에서 대각선 BD 까지의 거리를 구하여라.

▶ 답:

ightharpoonup 정답: $rac{120}{17}$

 $\overline{\mathrm{BD}} = \sqrt{8^2 + 15^2} = \sqrt{64 + 225} = \sqrt{289} = 17$ $\triangle ABD$ 에서 $8 \times 15 \times \frac{1}{2} = 17 \times \overline{AH} \times \frac{1}{2}$ $\therefore \overline{AH} = \frac{8 \times 15}{17} = \frac{120}{17}$

$$\therefore AH = \frac{17}{17} = \frac{17}{17}$$

19. 다음 그림에서 $\overline{BD} = 4\sqrt{3}$, ∠ABC = 45°, ∠BDC = 60°일 때, \overline{AB} 의 길이는?

① $\sqrt{6}$ ② 3 ③ $2\sqrt{3}$

 $4 \ 3\sqrt{2}$ $3\sqrt{6}$

해설

 $\angle CBD = 30^{\circ}$ 이므로 $\sqrt{3}: 2 = \overline{BC}: 4\sqrt{3}, \overline{BC} = 6$ $\angle ABC = \angle ACB = 45^{\circ}$ 이므로 $1: \sqrt{2} = \overline{AB}: 6$ $\therefore \overline{AB} = 3\sqrt{2}$ **20.** 두 이차함수 $y = -\frac{1}{5}x^2 + 2x - 1$ 과 $y = \frac{1}{7}x^2 + 2x + 16$ 의 그래프의 두 꼭짓점 사이의 거리는?

① 9 ② $\sqrt{15}$ ③ 11 ④ 13 ⑤ $3\sqrt{5}$

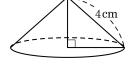
 $y = -\frac{1}{5}x^2 + 2x - 5$ $y = -\frac{1}{5}(x - 5)^2 + 4$ 에서 꼭짓점의 좌표는 (5, 4) 이고, $y = \frac{1}{7}x^2 + 2x + 16$

$$y = \frac{1}{7}x^2 + 2x + 16$$
$$y = \frac{1}{7}(x+7)^2 + 9 \text{ 에서 꼭짓점의 좌표는 } (-7, 9) \text{ 이므로}$$

· 두 꼭짓점 사이의 거리는 √{5 - (-7)}² + (4 - 9)² = √169 = 13이다.

V(3)

21. 다음 그림과 같이 밑면의 넓이가 $9\pi\,\mathrm{cm}^2$ 이고 모선의 길이가 4cm 인 원뿔의 높이



3 cm

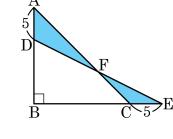
 $4 2\sqrt{3}$ cm

 $\boxed{2}\sqrt{7}\,\mathrm{cm}$ \odot 5 cm

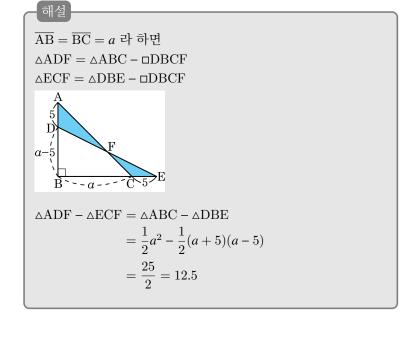
해설

밑면의 넓이가 $9\pi\,\mathrm{cm}^2$ 이므로 밑면의 반지름은 $3\,\mathrm{cm}$ 따라서 원뿔의 높이는 $\sqrt{4^2-3^2}=\sqrt{7}(\,\mathrm{cm})$ 이다.

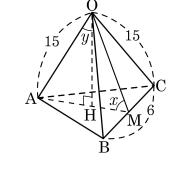
22. 다음 그림과 같이 $\overline{AB}=\overline{BC}$ 인 직각이등변삼각형 ABC 에서 $\overline{AD}=\overline{CE}=5$ 일 때, $\triangle ADF$ 의 넓이와 $\triangle ECF$ 의 넓이의 차를 구하여라.



답:▷ 정답: 12.5



23. 다음 그림과 같이 모서리의 길이가 15 인 정사면체의 한 꼭짓점 O에서 밑면에 내린 수선의 발을 H라 하고, \overline{BC} 의 중점을 M이라 하자. 이때, 정사면체의 높이 \overline{OH} 의 값을 구하여라.



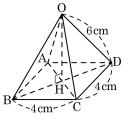
▷ 정답: 5√6

▶ 답:

해설

 $\overline{OH} = \frac{\sqrt{6}}{3} \times 15 = 5\sqrt{6}$

24. 다음 그림과 같이 밑면은 한 변이 $4 \, \mathrm{cm}$ 인 정 사각형이고, 옆면의 모서리의 길이는 $6\,\mathrm{cm}$ 일 때, △OHD 의 넓이를 구하여라.



ightharpoonup 정답: $2\sqrt{14}$ $m cm^2$

 $\underline{\mathrm{cm}^2}$

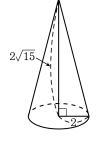
답:

 $\square ABCD$ 가 정사각형이므로 $\overline{BD}=\sqrt{4^2+4^2}=4\sqrt{2}(\,\mathrm{cm})$ $\overline{\mathrm{DH}} = \frac{1}{2}\overline{\mathrm{BD}} = 2\sqrt{2}(\mathrm{\,cm})$

 \therefore $\overline{\rm OH}=\sqrt{6^2-(2\sqrt{2})^2}=2\sqrt{7}(\,{\rm cm})$ $\triangle {\rm OHD}$ 의 넓이는

 $S = \frac{1}{2} \times 2\sqrt{2} \times 2\sqrt{7} = 2\sqrt{14} (\text{cm}^2)$ 이다.

25. 다음 그림과 같이 밑면의 반지름의 길이가 2, 높 이가 $2\sqrt{15}$ 인 원뿔의 전개도를 그렸을 때 생기는 부채꼴의 중심각의 크기를 구하여라.



▷ 정답: 90°

▶ 답:

원뿔의 모선의 길이는 $\sqrt{\left(2\sqrt{15}\right)^2 + 2^2} = \sqrt{64} = 8$

옆면의 호의 길이는 밑면의 둘레와 같으므로 부채꼴의 중심각의 크기를 x 라 하면 $2\pi \times 8 \times \frac{x}{360^{\circ}} = 2\pi \times 2$ $\therefore x = 90^{\circ}$