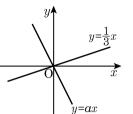
1. 다음 중 y가 x에 관한 일차함수인 것을 고르면?

$$\textcircled{1} \ \textcircled{2} \ \textcircled{3} \ \textcircled{0}, \ \textcircled{0} \quad \textcircled{4} \ \textcircled{e}, \ \textcircled{e} \quad \textcircled{5} \ \textcircled{e}, \ \textcircled{0}$$


해설
함수
$$y = f(x)$$
 에서 y 가 x 에 관한 일차식 $y = ax + b$ (a, b) 는 상수, $a \neq 0$) 의 꼴로 나타내어질 때, 이 함수 f 를 일차함수라 한다.

• 일차함수
$$y=f(x)$$
에서 $f(x)=\frac{-x+5}{4}$ 일 때, $2\times f(1)\times f(3)$ 의 값을 구하여라.

해설
$$f(1) = \frac{-1+5}{4} = 1$$

$$f(3) = \frac{-3+5}{4} = \frac{1}{2}$$
$$\therefore 2 \times f(1) \times f(3) = 2 \times 1 \times \frac{1}{2} = 1$$

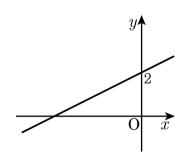
3. 일차함수 y = ax 의 그래프가 오른쪽과 같을 때, 다음 중 a 의 값이 될 수 있는 것은?

y = ax 의 그래프는 x 의 값이 증가할 때, y 의 값이 감소하는 함수인 것을 알 수 있다.

따라서 기울기 a < 0 이 되어야 한다.

보다 커야한다.

조건을 만족하는 a의 값은 -2 이다.


또한 $y = \frac{1}{3}x$ 보다 y 축에 가깝게 있으므로 기울기의 절댓값이 $\frac{1}{3}$

4. 일차함수 y = 2x의 그래프를 y축 방향으로 -3만큼 평행 이동하면 점 (-2, p)를 지난다. 이때, p의 값은?

①
$$-7$$
 ② -6 ③ -5 ④ -4 ⑤ -3

해설
일차 함수
$$y = 2x$$
의 그래프를 y 축 방향으로 -3 만큼 평행 이
동한 함수는 $y = 2x - 3$ 이고 이 점이 $(-2, p)$ 를 지나므로 $p = 2 \times (-2) - 3$ 이다.
따라서 $p = -7$ 이다.

5. 다음 그래프는 일차방정식 -2x + ay = 8 의 그래프이다. 이 때, x 절편을 구하여라.

해설
$$-2x + ay = 8 \text{ 이 점 } (0, 2) 를 지나므로$$

$$-2 \times 0 + 2 \times a = 8$$

$$\therefore a = 4$$

$$-2x + 4y = 8$$
$$\therefore y = \frac{1}{2}x + 2$$

6. 좌표평면에서 세 점 (-2, -3), (3, 7), (1, k) 가 한 직선 위에 있을 때, k 값을 구하는 식으로 맞는 것은?

①
$$\frac{7-3}{3-2} = \frac{k-7}{1-3}$$
 ② $\frac{3-(-2)}{7-(-3)} = \frac{k-7}{1-3}$ ② $\frac{7-(-3)}{3-(-2)} = \frac{k-7}{1-3}$ ④ $\frac{7-(-3)}{-2-3} = \frac{k-7}{1-3}$ ⑤ $\frac{7-3}{3-(-2)} = \frac{k-7}{1-3}$

7. ab < 0, abc > 0 일 때, 일차함수 $y = \frac{a}{b}x + c$ 의 그래프가 지나지 않는 사분면을 말하여라.

$$ab < 0$$
 이므로 $\frac{a}{b} < 0$ 이고, $ab < 0$, $abc > 0$ 이므로 $c < 0$ 이다. $y = \frac{a}{b}x + c$ 의 그래프는 기울기와 y 절편이 음수인 그래프이다.

①
$$\begin{cases} x + y = 1 \\ x - y = 3 \end{cases}$$

$$\begin{cases} -x + \frac{1}{2}y = 1 \\ 2x - y = 3 \end{cases}$$
③
$$\begin{cases} y = x + 3 \\ 2x - 4y = 1 \end{cases}$$

$$3 \begin{cases} -x + \frac{1}{2}y = 1\\ 2x - y = 3 \end{cases}$$

$$\begin{cases} y = x + 3 \\ 2x - 4y = 1 \end{cases}$$

 $\begin{cases} x + 2y = 1 \\ 3x + 5y = 6 \end{cases}$ $\begin{cases} \frac{1}{2}x - \frac{1}{3}y = 1 \\ 3x + 2y = 1 \end{cases}$

①, ②, ④, ⑤ : 기울기가 다른 두 직선의 교점은 1개이다.

③: 평행하므로 교점의 개수는 0개이다.

다음 연립방정식 중 해의 개수가 다른 하나는?

9. x의 범위가 $-2 \le x \le 6$ 인 일차함수 $y = -\frac{1}{2}x$ 를 y축 방향으로 b만큼 평행이동 하였더니 함숫값의 범위가 $7 \le y \le a$ 가 되었다. 이 때, 상수 a + b의 값은?

일차함수
$$y = -\frac{1}{2}x$$
를 y 의 축 방향으로 b 만큼 평행이동한 일차
함수는 $y = -\frac{1}{2}x + b$
기울기가 음수이므로 함숫값의 범위는 $f(6) \le y \le f(-2)$
 $f(6) = -3 + b = 7$ $\therefore b = 10$
 $f(-2) = 1 + b = a$ $\therefore a = 11(\because b = 10)$
 $\therefore a + b = 21$

10. 일차함수 $y = \frac{2}{3}x + 1$ 의 그래프의 y 절편을 a, y = -3x + 6의 그래프의 기울기를 b라 할 때, y = ax + b의 x 절편은?

애설
$$y = \frac{2}{3}x + 1$$
의 그래프의 y 절편은 1 이므로 $a = 1$
$$y = -3x + 6$$
의 그래프의 기울기는 -3 이므로 $b = -3$ 이다. 따라서 주어진 함수는 $y = x - 3$ 이고, 이 함수의 x 절편은 3 이다.

11. 일차함수
$$y = ax + b$$
 의 x 절편이 3 , y 절편이 -6 일 때, 일차함수 $y = \frac{b}{a}x + ab$ 의 x 절편과 y 절편의 합을 구하여라.

$$\frac{x}{3} + \frac{y}{-6} = 1 \ \to \ y = 2x - 6$$

∴ a = 2, b = -6 $y = \frac{b}{a}x + ab = -3x - 12$

따라서 합은 -4 - 12 = -16 이다.

12. 일차함수
$$y = 3x - 2a + 1$$
의 그래프는 점 $(3, 2)$ 를 지난다. 이 그래프를 y 축의 방향으로 b 만큼 평행이동하였더니 $y = cx - 4$ 의 그래프와 일치하였다. 이때, $\frac{b+c}{a}$ 의 값을 구하여라.

$$ightharpoonup$$
 답: $rac{3}{2}$

 $\therefore a = 4$

따라서
$$y = 3x - 7$$

ii) $y = 3x - 7 + b$ 와 $y = cx - 4$ 가 일치하므로

$$b = 3, c = 3$$
iii)
$$\frac{b+c}{a} = \frac{3+3}{4} = \frac{6}{4} = \frac{3}{2}$$

13. 직선의 방정식 7x + 4y = 21 위의 한 점의 좌표가 x, y의 절댓값은 같고 부호는 다르다고 한다. 이 점의 좌표로 맞는 것은?

(9,-9)

$$(-9,9)$$
 $(7,-7)$

 \bigcirc (-11, 11)

① (11,-11)

14. 직선 (a+2)x+y-a-1=0이 제 1 사분면을 지나지 않도록 하는 a의 값의 범위를 구하면?

①
$$-2 < a < -1$$
 ② $-3 < a < -2$ ③ $-4 < a < -3$

음수이어야 한다. -(a+2) < 0, a+1 < 0

$$-(a+2) < 0, \ a+1 < 0$$

$$\therefore -2 < a < -1$$

15. 두 직선 $\begin{cases} 2x + y = 5 \\ 3x - 2y = 4 \end{cases}$ 의 교점을 지나고, y 축에 수직인 직선의 방정식을 구하여라.

① x = 1 ② y = 1 ③ x = 2 ④ y = 2 ⑤ x = 3

해설
$$\begin{cases} 2x + y = 5 \\ 3x - 2y = 4 \end{cases}$$
 의 교점은 두 방정식의 해와 같으므로 $x = 2, y = 1,$ y 축에 수직이므로 x 축에 평행하다. $\therefore y = 1$

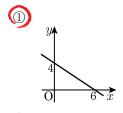
16. 좌표평면 위에서 y = 2x - 1, y = ax - 4 의 교점의 좌표가 (-3, b) 일 때, a - b 의 값은?

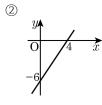
17. x: y = 2: 5 와 3(x-y) + 2y = 1 의 교점을 지나고, 점 (1,4) 를 지나는 직선의 방정식의 x 절편을 구하여라.

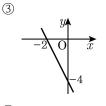
$$x: y = 2: 5 \Rightarrow 2y = 5x, \ y = \frac{5}{2}x$$

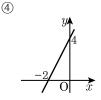
 $3(x - y) + 2y = 1 \Rightarrow 3x - y = 1$

두 식의 교점을 구하면
$$(x,y) = (2,5)$$
 이다.


구해야 할 직선은 두 점
$$(2,5)$$
와 $(1,4)$ 를 지나므로

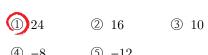

$$(기울기) = \frac{5-4}{2-1} = 1 이고,$$
$$y = x + b 라 할 때, 점 (1,4) 를 지나므로 식 y = x + 3 이다.$$


$$y = x + b$$
 다 알 때, 점 $(1,4)$ 들 시나므로 식 $y = x + 3$ 이다.
이 방정식의 x 절편은 $y = 0$ 일 때의 x 값이므로


x 절편은 −3 이다.

18. 다음 중 $y = -\frac{2}{3}x + 4$ 의 그래프는?

기울기가 $-\frac{2}{3}$ 이고, y절편이 4인 그래프는 ①이다.


19. 직선 $y = ax + b (a \neq 0)$ 의 그래프에 대한 설명으로 옳지 <u>않은</u> 것은?

- ① x절편은 $-\frac{b}{a}$ 이다.
- ② y절편은 b이다.
- ③ 직선의 기울기는 a이다.
- ④ y = ax의 그래프를 y축의 방향으로 b만큼 평행이동한 직선이다.
- ⑤점 $\left(-\frac{b}{a}, b\right)$ 를 지난다.

해설

점 (0, b)를 지난다.

20. 다음 그림에서 점 A, B는 직선 $\frac{x}{a} + \frac{y}{b} = 1$ 과 x축, y축과의 교점이다. ΔBOA 의 넓이가 12일 때, ab의 값을 구하면?

$$x$$
절편 a, y 절편 b 이므로
$$\Delta BOA = a \times b \times \frac{1}{2} = 12$$

 $\therefore ab = 24$

21. 일차함수 y = 3x - 2위의 점 A(a, 4)와 일차함수 y = -2x + 4위의 점 B(1, b)를 지나는 직선의 방정식 y = tx + s를 만들었다. a + b + t + s의 값을 구하여라.

점 A는
$$y = 3x - 2$$
위의 점이므로 $4 = 3a - 2$, $a = 2$
점 B는 $y = -2x + 4$ 위의 점이므로 $b = -2 \times 1 + 4 = 2$

점 (2, 4)와 점 (1, 2)를 지나는 직선의 방정식은 y = 2x이므로 t = 2, s = 0이다.

파라서 a+b+t+s=2+2+2+0=6이다.

22. 길이가 15cm, 20cm 인 두 개의 양초 A, B 에 불을 붙였더니 A 는 1 분에 0.3cm, B 는 1 분에 0.5cm 씩 길이가 줄어들었다. 동시에 불을 붙였을 때, A, B 의 길이가 같아지는 것은 불을 붙인지 몇 분 후인지 구하여라.

분후

답:▷ 정답: 25 분후

x 분 후의 두 양초 A, B 의 길이 ycm 는 각각 y = 15 - 0.3x, y = 20 - 0.5x 이다. 따라서 두 일차함수의 그래프의 교점은 (25, 7.5) 이므로 두 양초의 길이는 25 분 후에 같아진다.

23. x의 범위가 $-5 \le x \le 4$ 인 함수 y = ax + 3a + 2에서 점 (-3, 2)를 지나고, y의 값이 항상 양수가 되도록 a의 값의 범위를 구하여라.

$$ightharpoonup$$
 정답: $-\frac{2}{7} < a < 1$

해설
$$y = ax + 3a + 2 는 점 (-3, 2) 를 항상 지난다.$$

$$y = \frac{3a + 2}{2} + \frac{2}{3}$$

$$\frac{3a + 2}{2} + \frac{2}{3}$$

$$\frac{3a + 2}{2} + \frac{2}{3}$$

$$\frac{3a + 2}{4} + \frac{2}{3$$

 $\therefore -\frac{2}{7} < a < 1$

24. 직선 7x + 5y = 1과 직선 7ax + 5by = 1이 평행하고 점 (a, b)는 직선 7x + 5y = 1 위의 점일 때. a + b의 값을 구하여라.

①
$$\frac{1}{3}$$
 ② $\frac{1}{4}$ ③ $\frac{1}{5}$ ④ $\frac{1}{6}$ ⑤ $\frac{1}{7}$

$$\frac{1}{a} = \frac{1}{b}, a = b \cdots ①$$

$$7x + 5y = 1 \text{ 에 점 } (a, b) 를 대입하면$$

$$7a + 5b = 1 \cdots \bigcirc$$

$$a = b \text{ 이므로 } 7a + 5a = 1, 12a = 1$$

$$\therefore a = b = \frac{1}{12}, a + b = \frac{1}{6}$$

평행일 조건 : $\frac{7}{7a} = \frac{5}{5b} \neq \frac{1}{1}$

세 개의 일차함수 x+2y=4, -2x+6y=17, $y=ax+\frac{1}{2}a$ 의 그래프가 만나 삼각형을 만들 수 없을 때, a 의 값을 모두 구하여라.

 \triangleright 정답 : $\frac{1}{2}$

$$ightharpoonup$$
 정답: $-\frac{1}{2}$ 또는 -0.5

해설
$$y = ax + \frac{1}{2}a$$
 의 그래프가 다음과 같을 때, 세 직선으로 삼각형을

만들 수 없다.

1) x + 2y = 4 또는 -2x + 6y = 17 과 평행할 때 $(x+2y=4의 기울기)=-\frac{1}{2}$

 $(-2x + 6y = 17의 기울기) = \frac{1}{2}$

 $\therefore a = -\frac{1}{2}$ 또는 $a = \frac{1}{2}$

2) x + 2y = 4 와 -2x + 6y = 17 의 교점을 지날 때, x + 2y = 4와 -2x + 6y = 17 의 교점은 $\left(-1, \frac{5}{2}\right)$ 이므로

 $\frac{5}{2} = -a + \frac{1}{2}a \qquad \therefore a = -5$

(1), (2)에 의해 (a)의 값은 $(-5), (-\frac{1}{2}), (\frac{1}{3})$ 이다.