1.	다음은 성수의 5 외의 제육 실기	횟수(회)	1	2	3	4	
	중 4 회에 걸친 실기 점수를 나	점수(점)	84	78	80	76	
	타낸 표이다. 다음 시험에서 몇			'			
	점을 받아야 평균이 75 점이 되겠는가?						

① 55점 ② 57점 ③ 59점 ④ 61점 ⑤ 63점

하설
다음에 받아야 할 점수를
$$x$$
 점이라고 하면
$$(평균) = \frac{84 + 78 + 80 + 76 + x}{5} = 75, \quad \frac{318 + x}{5} = 75, \quad 318 + 3$$

5 x = 375 ∴ x = 57 따라서 57 점을 받으면 평균 75 점이 될 수 있다. 2. 다음은 A, B, C, D, E 5 명의 학생의 영어 성적의 편차를 나타낸 표이다. 이 5 명의 수학 성적의 평균이 8점 일 때, A 의 성적과 표준편차를 차례대로 나열한 것은?

	Α	В	С	D	Е
편차(점)	-1	2	0	х	1

① 5 \overline{A} , $\sqrt{2}$ \overline{A} ② 6 \overline{A} , $\sqrt{2}$ \overline{A} ③ 6 \overline{A} , $\sqrt{3}$ \overline{A}

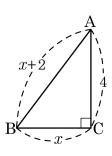
④ 7점, √2점 ⑤ 8점, √3점

A 의 성적은
$$8-1=7(점)$$

또한, 편차의 합은 0 이므로
 $-1+2+0+x+1=0$

-1+2+0+x+1=0
x+2=0, ∴ x=-2
따라서 분산이
$$\frac{(-1)^2+2^2+0^2+(-2)^2+1^2}{5}=\frac{10}{5}=2$$
이므로 표준편차는 √2점 이다.

. 다음 그림에서 x 의 값을 구하여라.

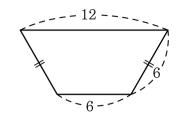


$$(x+2)^2 = x^2 + 4^2$$

$$x^2 + 4x + 4 = x^2 + 16$$

$$4x = 12 : x = 3$$

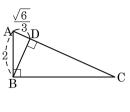
4. 윗변의 길이가 12, 아랫변의 길이가 6, 나머지 두변의 길이가 6 인 등변사다리꼴의 넓이는?



① $21\sqrt{3}$ ② $22\sqrt{3}$ ③ $23\sqrt{3}$ ④ $25\sqrt{3}$ ⑤ $27\sqrt{3}$

의 값을 구하여라.

5.



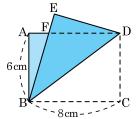
닮은 삼각형의 성질을 이용하면

다음은 직각삼각형 ABC 의 점 B 에서 수

선을 내린 것이다. $\overline{AC} = x$ 라고 했을 때. x

$$\therefore x = 4 \times \frac{3}{\sqrt{6}} = 2\sqrt{6}$$

6. 다음 그림과 같이 직사각형 ABCD 에서 BD 를 접는 선으로 하여 접었다. AF 의 길이를 x 로 놓을 때, BF 의 길이를 x 에 관한 식으로 나타내면?



①
$$x + 4$$
 ② $2x$ ③ $8 - x$ ④ $6 - x$ ⑤ x^2

 $\triangle ABF \equiv \triangle EDF$ 이므로 $\overline{AF} = x$ 라 하면 $\overline{BF} = 8 - x$ 이다.

7. 좌표평면 위의 두 점 A(-3, 4), B(6, x) 사이의 거리가 √82 일 때, x 의 값을 모두 구하면?

지B =
$$\sqrt{(-3-6)^2 + (4-x)^2} = \sqrt{82}$$

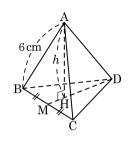
 $(4-x)^2 + 81 = 82$
 $(4-x)^2 = 1$
따라서 $x = 5$ 또는 3 이다.

8.

면체 A – BCD의 꼭짓점 A 에서 밑면 BCD에 내린 수선의 발을 H라 하면 점 H는 정삼각형

BCD의 무게중심이다. \overline{AH} 의 길이는?

다음 그림과 같이 한 변의 길이가 6cm 인 정사



① $6\sqrt{3}$ cm

② $12\sqrt{3}$ cm

 $3 12\sqrt{6}$ cm

4 $2\sqrt{6}$ cm

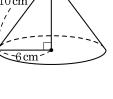
 \bigcirc 2 $\sqrt{3}$ cm

$$\triangle BCD$$
 에서 $\overline{DM} = \frac{\sqrt{3}}{2} \times 6 = 3\sqrt{3} \, (cm)$

 $\overline{\mathrm{DH}}:\overline{\mathrm{HM}}=2:1$ 이므로 $\overline{\mathrm{DH}}=\frac{2}{3}\times\overline{\mathrm{DM}}=\frac{2}{3}\times3\sqrt{3}=2\sqrt{3}\,\mathrm{(cm)}$ 직각삼각형 AHD에서 $h=\sqrt{6^2-\left(2\sqrt{3}\right)^2}=2\sqrt{6}\,\mathrm{(cm)}$ 9. 모선의 길이가 10 cm 인 밑면의 반지름이 6 cm 인 원뿔의 높이는? 10 cm

① 6 cm ② $6 \sqrt{2} \text{ cm}$ ③ 7 cm

⑤ 9 cm



높이 $h = \sqrt{10^2 - 6^2} = 8$ (cm) 이다.

10. 다섯 개의 수 5, 3, a, b, 9 의 평균이 5 이고, 분산이 6 일 때, $a^2 + b^2$ 의 값을 구하여라.

해설
다섯 개의 수 5, 3, a, b, 9 의 평균이 5 이므로
$$\frac{5+3+a+b+9}{5} = 5, a+b+17 = 25$$

$$\frac{(5-5)^2 + (3-5)^2 + (a-5)^2}{5} +$$

$$\frac{5}{(b-5)^2 + (9-5)^2} = 6$$

$$\frac{a^2 + b^2 - 10(a+b) + 70}{5} = 6$$

 $a^2 + b^2 - 10(a+b) + 70 = 30$

$$\therefore \ a^2 + b^2 - 10(a+b) = -40 \cdots$$

©의 식에 ①을 대입하면

 $0 + 4 + a^2 - 10a + 25 + b^2 - 10b + 25 + 16$

$$\therefore a^2 + b^2 = 10(a+b) - 40 = 10 \times 8 - 40 = 40$$

11. 네 수
$$a$$
, b , c , d 의 평균과 분산이 각각 10 , 5 일 때, $(a-10)^2 + (b-10)^2 + (c-10)^2 + (d-10)^2$ 의 값은?

네 수
$$a$$
, b , c , d 의 평균이 10 이므로 각 변량에 대한 편차는 $a-10$, $b-10$, $c-10$, $d-10$ 이다. 따라서 분산은
$$\frac{(a-10)^2+(b-10)^2+(c-10)^2+(d-10)^2}{4}=5$$
∴ $(a-10)^2+(b-10)^2+(c-10)^2+(d-10)^2=20$

12. 다음 중 [보기] A, B, C 의 표준편차의 대소 관계를 바르게 나타낸 것은?

A. 1 부터 50 까지의 자연수

B. 51 부터 100 까지의 자연수 C. 1 부터 100 까지의 홀수

- C>A=B \bigcirc A>B=C (4) B>C>A
 - $\stackrel{\text{(5)}}{}$ A=B=C

A 와 B 의 표준편차는 같고, C 의 표준편차는 이들보다 크다.

 \bigcirc C>A>B

13. 다음은 양궁 선수 A, B, C, D, E 가 다섯 발의 화살을 쏘아 얻은 점수의 평균과 표준편차를 나타낸 표이다. 점수가 가장 고른 선수는?

이름	Α	В	С	D	Е
평균(점)	8	10	9	8	7
표준편차(점)	0.5	2	1	1.5	2.5

-11 x

② B

③ C

(4

⑤ E

- 해설

표준편차가 작을수록 변량이 평균 주위에 더 집중된다. 따라서 성적이 가장 고른 학생은 표준편차가 가장 작은 A 이다. 4. 변량 x_1, x_2, \dots, x_n 의 평균이 4, 분산이 5일 때, 변량 $3x_1 - 5, 3x_2 - 5, \dots 3x_n - 5$ 의 평균을 m, 분산을 n이라 한다. 이 때, m + n의 값은?

(분산)= $3^2 \cdot 5 = 45 = n$ $\therefore m + n = 7 + 45 = 52$

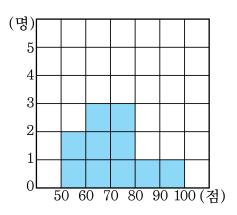
 \bigcirc 50

② 51

, 55

5) 54

15. 다음 히스토그램은 학생 10명의 과학 성적을 나타낸 것이다. 이 자료 의 분산은?



평균:
$$\frac{55 \times 2 + 65 \times 3 + 75 \times 3 + 85 \times 1}{10} +$$

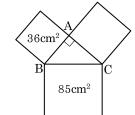
$$\frac{95 \times 1}{10} = 71$$
편차: $-16, -6, 4, 14, 24$
분산:
$$\frac{(-16)^2 \times 2 + (-6)^2 \times 3 + 4^2 \times 3}{10} +$$

$$\frac{14^2 \times 1 + 24^2 \times 1}{10} =$$

$$\frac{1440}{10} = 144$$

해설

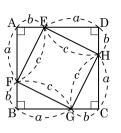
16. 다음은 직각삼각형 ABC 의 각 변을 한 변으로 하는 세 개의 정사각형을 그린 것이다. \overline{AC} 의 길이는?



해설

 \overline{AB} 를 포함하는 정사각형의 넓이가 $36 \, \mathrm{cm}^2$ \overline{BC} 를 포함하는 정사각형의 넓이가 $85 \, \mathrm{cm}^2$ 이다. \overline{AC} 를 포함하는 정사각형의 넓이는 $85 - 36 = 49 \, (\mathrm{cm}^2)$ 이므로 $\overline{AC} = 7 \, \mathrm{cm}$ 이다.

17. 다음 그림은 한 변의 길이가 a + b 인 정사각형을 나타낸 것이다. 다음 중 옳지 않은 것은?



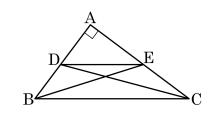
- ① ∠EHG = 90°
- ② □EFGH 는 정사각형이다.
- ③ □ABCD 와 □EFGH 의 넓이의 비는 *a* + *b* : *c* 이다.
- $\textcircled{4} \triangle BGF \equiv \triangle CHG$
- \bigcirc $\angle FEA + \angle GHC = 90^{\circ}$

해설

□ABCD 와 □EFGH 는 정사각형이므로 넓이의 비는 한 변의 비의 제곱과 비례한다.

따라서 $(a+b)^2: c^2$ 이다.

18. 다음 그림에서 $\angle A=90^\circ, \overline{DE}=5 \mathrm{cm}, \ \overline{BE}=6 \mathrm{cm}, \ \overline{CD}=8 \mathrm{cm}$ 일 때, \overline{BC} 의 길이는?



①
$$3\sqrt{3}$$
 cm

$$2 3\sqrt{5} \,\mathrm{cm}$$

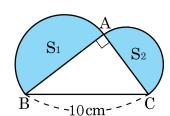
$$3 4\sqrt{3} \text{ cm}$$

$$4 5\sqrt{2} \,\mathrm{cm}$$

$$\bigcirc$$
 5 $\sqrt{3}$ cm

$$5^2 + x^2 = 6^2 + 8^2$$
$$x = 5\sqrt{3} \text{ cm}$$

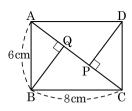
19. 다음 그림과 같이 직각삼각형 ABC 에서 직각을 낀 두 변을 각각 지름으로 하는 반원을 그렸을 때, 두 반원의 넓이의 합 $S_1 + S_2$ 의 값을 구하면?



$$3\frac{25}{2}\pi\,\mathrm{cm}^2$$

지 +
$$S_2 = \left(\frac{\overline{AB}}{2}\right)^2 \pi \times \frac{1}{2} + \left(\frac{\overline{AC}}{2}\right)^2 \pi \times \frac{1}{2} = \frac{\pi}{8} \left(\overline{AB}^2 + \overline{AC}^2\right)$$
$$= \frac{\pi}{8} \times \overline{BC}^2 = \frac{25}{2} \pi (\text{cm}^2)$$

20. 다음 직사각형의 두 꼭짓점 B, D 에서 대각 선 AC 에 내린 수선의 발을 각각 Q, P 라 할 때, \overline{PQ} 의 길이를 구하여라.



답:

 $\underline{\mathrm{cm}}$

정답: 2.8 cm

에크

△ABC 는 직각삼각형이므로

 $\overline{AC} = 10(\text{cm})$ 이다.

 $\overline{AQ} = \overline{PC}$ 이고 $\triangle ABQ$ 와 $\triangle ABC$ 는 닮음이므로 $\overline{AB} : \overline{AC} = \overline{AQ} : \overline{AB}$ 에서

 $\overline{AB}^2 = \overline{AQ} \times \overline{AC}$ 이므로

 $\overline{AQ} = \frac{36}{10} = 3.6$ (cm) 이다.

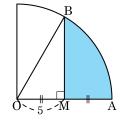
따라서 $\overline{PQ} = 10 - 3.6 - 3.6 = 2.8 (cm)$ 이다.

해설
$$\overline{BD} = 5\sqrt{3}$$

$$\overline{AC} = \sqrt{(4+5)^2 + (5\sqrt{3})^2} = 2\sqrt{39}$$

22. 다음 그림과 같이 사분원 OA 의 중점을 M 이라고 하고 OA⊥BM 일 때, 색칠한 부분의 넓이를 구하면?

①
$$\frac{50}{3}\pi - \frac{25\sqrt{2}}{2}$$
 ② $\frac{50}{3}\pi - \frac{25\sqrt{3}}{2}$ ③ $\frac{50}{2}\pi - \frac{25\sqrt{3}}{2}$ ④ $\frac{25}{3}\pi - \frac{25\sqrt{3}}{2}$ ⑤ $\frac{25}{3}\pi - \frac{25\sqrt{3}}{3}$

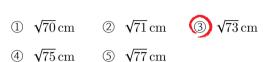


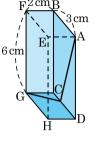
$$\overline{\mathrm{OB}} = 10$$
, $\triangle \mathrm{OBM}$ 에서 $\overline{\mathrm{MB}} = 5\sqrt{3}$ $\triangle \mathrm{OMB}$ 에서 $\angle \mathrm{BOM} = 60^\circ$ 부채꼴 OAB 의 넓이= $10^2\pi \times \frac{60^\circ}{360^\circ} = \frac{50}{3}\pi$ $\triangle \mathrm{OMB} = \frac{1}{2} \times 5 \times 5\sqrt{3} = \frac{25\sqrt{3}}{2}$

①
$$2\sqrt{15} \text{ cm}$$
 ② $4\sqrt{15} \text{ cm}$ ③ $\sqrt{70} \text{ cm}$ ④ $5\sqrt{2} \text{ cm}$ ⑤ 9 cm

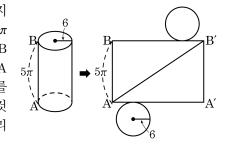
해설
$$\sqrt{3^2+5^2+6^2}=\sqrt{70}~(\,\mathrm{cm})~\mathrm{이다}.$$

24. 다음과 같은 직육면체에서 점 $A = ^2$ 출발하여 반드 $A = ^2$ 전 $E = ^2$ 지나 점 $E = ^2$ 에 이르는 선분의 최단거리 는?





25. 다음 그림과 같이 밑면의 반지 름의 길이가 6 이고 높이가 5π 인 원기둥에서 A 지점에서 B 지점까지 실을 한 번 감을 때, A 에서 B 에 이르는 최단 거리를 구하기 위해 전개도를 그린 것 이다. 밑면의 둘레와 최단 거리 를 바르게 구한 것은?



 $12\pi, 13\pi$

① 10π , 12π

 $412\pi, 15\pi$

② 10π , 13π

 \bigcirc 15 π , 20 π

- i) 밑면의 반지름의 길이가 6 이므로 밑면의 둘레는 $2\pi \times 6 = 12\pi$ ii) 최단 거리는 직각삼각형 AA'B' 의 빗변이므로 피타고라스 정리에 의해

$$\sqrt{(12\pi)^2 + (5\pi)^2} = \sqrt{(144 + 25)\pi^2}$$
$$= \sqrt{169\pi^2} = 13\pi$$