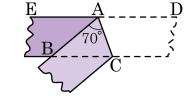
1. 폭이 일정한 종이테이프를 다음 그림과 같이 접었다. $\angle BAC = 70^\circ$ 일 때, ∠BAC 와 크기가 같은 각은?



① ∠ABC ④ ∠BAD

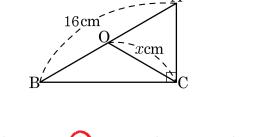
② ∠ACB ⑤ ∠EAD

③ ∠EAC

종이를 접었으므로 $\angle \mathrm{BAC} = \angle \mathrm{DAC} = 70^{\circ}$ 이다. $\angle \mathrm{DAC} =$

∠ACB (엇각)이다. 따라서 ∠BAC = ∠ACB 이다.

2. 다음 그림에서 점 O는 직각삼각형 ABC의 외심이다. $\overline{\rm AB}=16{
m cm}$ 일 때, x의 길이는?



① 4cm

② 6cm

③8cm

④ 10cm

⑤ 12cm

점 O가 △ABC의 외심이므로

 $\overline{\mathrm{OA}} = \overline{\mathrm{OB}} = \overline{\mathrm{OC}}$ 이다. $\therefore x = \overline{\mathrm{OC}} = 8(\,\mathrm{cm})$

- 3. 다음은 삼각형 모양의 종이를 오려서 최대한 큰 원을 만드는 과정이다. 빈 줄에 들어갈 것으로 옳은 것은?
 - 1. 세 내각의 이등분선을 긋는다. 2. 세 내각의 이등분선의 교점을 I 라고 한다.
 - 3. 4. 그린 원을 오린다.

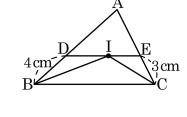
 - ① 점 I 에서 한 변까지의 거리를 반지름으로 하는 원을 그린다. ② 점 I 에서 꼭짓점까지의 거리를 반지름으로 하는 원을 그린다
 - ③ 세 변의 수직이등분선의 교점을 O 라고 한다.
 - ④ 점 O 에서 한 변까지의 거리를 반지름으로 하는 원을 그린다.
 - ⑤ 점 O 에서 꼭짓점까지의 거리를 반지름으로 하는 원을 그린다.

1. 세 내각의 이등분선을 긋는다.

해설

- 2. 세 내각의 이등분선의 교점을 I 라고 한다.
- 3. 점 I 에서 한 변까지의 거리를 반지름으로 하는 원을 그린다.
- 4. 그린 원을 오린다.

 ΔABC 에서 점 I 는 내심이다. 다음 그림과 같이 \overline{DE} 는 내심을 지나 **4.** 면서 \overline{BC} 에 평행일 때, \overline{DI} 의 길이는?



 $\bigcirc 1 \text{ cm}$

 $\ensuremath{\bigcirc}\xspace 2\ensuremath{\,\mathrm{cm}}\xspace$

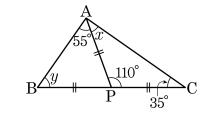
 \Im 3 cm

4 cm

점 I 는 내심이므로 \angle DBI = \angle CBI , \angle CBI = \angle DIB (엇각)

즉, ∠DBI = ∠DIB 따라서 $\overline{BD} = \overline{DI} = 4\,\mathrm{cm}$

 $\mathbf{5}$. 다음 그림에서 $\overline{\mathrm{PC}}$ 와 길이가 같은 것을 알맞게 쓴 것은?



① \overline{PA} , \overline{AB} ② \overline{PB} , \overline{AC} ③ \overline{BC} , \overline{PA}

해설

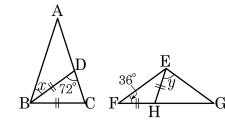
 $\angle PAC = 35^{\circ}$

따라서 $\triangle APC$ 는 $\overline{PA} = \overline{PC}$ 인 이등변삼각형 $\angle \mathrm{BPA} = 180^{\circ} - 110^{\circ} = 70^{\circ}$

 $\Delta y = 180^{\circ} - (70^{\circ} + 55^{\circ}) = 55^{\circ}$ 따라서 $\triangle ABP$ 는 $\overline{PA} = \overline{PB}$ 인 이등변삼각형

 $\therefore \overline{\mathrm{PA}} = \overline{\mathrm{PB}} = \overline{\mathrm{PC}}$

6. 다음 그림의 $\triangle ABC$ 와 $\triangle EFG$ 에서 $\overline{AB}=\overline{AC},\overline{EF}=\overline{EG}$ 일 때, $\angle x+\angle y$ 의 크기는 ?



① 104° ② 105° ③ 106° ④ 107° ⑤ 10

ΔBCD 는 이등변삼각형이므로

해설

∠CBD = 180° - 2 × 72° = 36° ∧ A B C 느 이두벼산가형이므로

△ABC 는 이등변삼각형이므로 ∠ABC = ∠ACB = 72°

 $\therefore \angle x = 72^{\circ} - 36^{\circ} = 36^{\circ}$

△EFG 는 이등변삼각형이므로 ∠FGE = 36°, ∠FEG = 108°

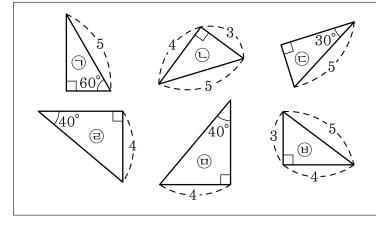
또 ΔEFH 는 이등변삼각형이므로

 $\angle EFH = \angle FEH = 36^{\circ}$ $\therefore \angle y = 108^{\circ} - 36^{\circ} = 72^{\circ}$

따라서 $\angle x + \angle y = 36^{\circ} + 72^{\circ} = 108^{\circ}$

·

7. 다음 직각삼각형 중에서 서로 합동인 것끼리 짝지은 것이 <u>아닌</u> 것을 모두 고르면?



① ① 과 L) ④ L과 B

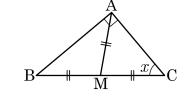
② ()과 (C) ③ (e)과 (D) ③Q과 @

⑤과 ⑥ : 빗변의 길이가 5 로 같고, 대각의 크기가 30° , 60° 로

같으므로 RHA 합동이다. ⑥과 ⑥: 빗변의 길이가 5 로 같고, 나머지 한 대변의 길이가 3 으로 같으므로 RHS 합동이다.

(a)과 (a): 대응각의 크기가 40°, 90°로 같고 한 대변의 길이가 4로 같으므로 ASA 합동이다.

8. 다음 그림에서 점 M 은 $\angle A = 90^\circ$ 인 직각삼각형 ABC 의 빗변의 중점이다. $\angle AMB : \angle AMC = 5 : 4$ 일 때, $\angle x$ 의 크기를 구하여라.



① 30°

② 40°

(3) 50

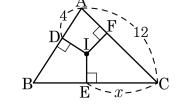
4 60°

⑤ 70°

 $\angle AMB : \angle AMC = 5 : 4$ 이므로 $\angle AMB = 100^{\circ}$, $\angle AMC = 80^{\circ}$

 $\overline{\rm AM}=\overline{\rm CM}$ 이므로 $\Delta {\rm AMC}$ 는 이등변삼각형, $\angle {\rm MAC}=\angle {\rm MCA}$ 이다. $\angle {\rm AMC}=80^\circ$ 이므로 $\angle {\rm MAC}=(180^\circ-80^\circ)\div 2=50^\circ$ 이다.

9. 다음 그림에서 점 $I 는 \triangle ABC$ 의 내심이다. x의 값을 구하여라.



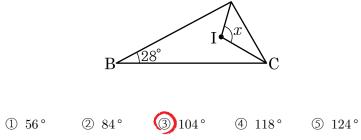
답:

➢ 정답: 8

점 I는 $\triangle ABC$ 의 내심이므로, $\overline{AD} = \overline{AF}$ 이고, $\overline{CE} = \overline{CF}$ 이다.

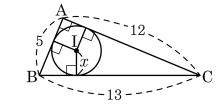
따라서 4+x=12이므로 x=8이다.

10. \triangle ABC 에서 점 I 는 내심일 때, $\angle x$ 의 크기는?



 $\angle x = 90^{\circ} + \frac{1}{2}$ $\angle B$ 이므로 $\angle x = 90^{\circ} + \frac{1}{2} \times 28^{\circ} = 104^{\circ}$

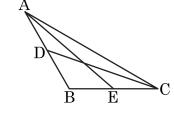
11. $\triangle ABC$ 의 넓이가 30 일 때, x 의 길이를 구하여라.(단, 점 I 는 내심)



▶ 답: ▷ 정답: 2

($\triangle ABC$ 의 넓이) $=\frac{1}{2} \times x \times (\overline{AB} + \overline{BC} + \overline{AC}) = 30$ $\frac{1}{2} \times x \times 30 = 30$ 따라서 x = 2 이다.

12. 다음 그림과 같이 $\overline{AB}=\overline{BC}$ 인 이등변삼각형 ABC 의 꼭짓점 A, C 에서 대변의 중점과의 교점을 각각 D, E 라고 할 때, $\overline{AE}=\overline{CD}$ 임을 증명하는 과정이다. $⑦\sim ©$ 에 들어갈 말을 알맞게 쓴 것을 고르면?



[가정] $\overline{AB} = \overline{BC}$, 점 D, E 는 \overline{AB} 와 \overline{BC} 의 중점 [결론] $\overline{AE} = \overline{CD}$ [증명] $\triangle ADC$ 와 $\triangle CEA$ 에서 (②)는 공통 ···⑤ $\angle DAC = \angle ECA \cdots \bigcirc$ 또 $\overline{AD} = \frac{1}{2}\overline{AB}, \overline{CE} = \frac{1}{2}\overline{BC}$ 이고 $\overline{AB} = \overline{BC}$ 이므로 (④)···ⓒ ⑤,ⓒ,ⓒ에서 $\triangle ADC$ 와 $\triangle CEA$ 는 SAS 합동 따라서 (③)

② \overline{AE} , $\overline{AE} = \overline{CD}$, $\overline{AE} \leftarrow \overline{CD}$ 와 길이가 같다.

① \overline{AE} , \overline{AD} = \overline{CE} , \overline{AB} 는 \overline{CB} 와 길이가 같다.

- ③ \overline{AC} , $\overline{AD} = \overline{CE}$, $\overline{AB} \leftarrow \overline{CB}$ 와 길이가 같다.
- ④ \overline{AC} , $\overline{AE} = \overline{CD}$, $\overline{AB} \leftarrow \overline{CB}$ 와 길이가 같다.
- ⑤ \overline{AC} , $\overline{AD} = \overline{CE}$, $\overline{AE} 는 \overline{CD}$ 와 길이가 같다.
- -11 21

[가정] $\overline{AB} = \overline{BC}$, 점 D, E 는 \overline{AB} 와 \overline{BC} 의 중점

[결론] $\overline{AE} = \overline{CD}$ [증명] △ADC 와 △CEA 에서 (\overline{AC})는 공통… ⑦

또 $\overline{AD} = \frac{1}{2}\overline{AB}, \overline{CE} = \frac{1}{2}\overline{BC}$ 이고 $\overline{AB} = \overline{BC}$ 이므로

 $\angle \mathrm{DAC} = \angle \mathrm{ECA} \cdots \bigcirc$

($\overline{AD} = \overline{CE}$)···⑦ ③,②,©에서 $\triangle ADC$ 와 $\triangle CEA$ 는 SAS 합동 따라서 (\overline{AE} 는 \overline{CD} 와 길이가 같다.)

떠디자 (AE 는 UD 되 철학기 됩니.

13. 다음 그림에서 직각이등변삼각형 ABC 의 고꼭짓점 A 를 지나는 직선 *l* 이 있다. B 와 C 에서 직선 *l* 위에 내린 수선의 발을 각각 D,E 라 하면, BD = 5, DE = 8 일 때, CE 의 길이는?

① 1 ② 2 ③ 3 ④ 4 ⑤ 5

 $\triangle ADB$ 와 $\triangle AEC$ 에서 $\angle ADB = \angle AEC = 90$ $^{\circ} \cdots$ $^{\circ}$

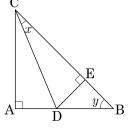
해설

 $\overline{AB} = \overline{AC} \cdots \bigcirc$

 $\angle DAB = \angle ACE \ (\therefore \angle DAB + \angle EAC = 90^{\circ} \cdots \bigcirc)$

 \bigcirc , \bigcirc , \bigcirc 에 의해 $\triangle ADB \equiv \triangle AEC$ 이므로 \overline{CE} 의 길이는 \overline{DE} – \overline{BD} = 3이 성립한다.

14. 다음 그림과 같이 $\overline{AC} = \overline{AB}$ 인 직각이등변 삼각형 ABC 에서 $\overline{\mathrm{AD}} = \overline{\mathrm{DE}}$ 일 때, $\angle x + \angle y$ 의 크기를 구하여라.



▷ 정답: 67.5_°

답:

 ΔADC 와 ΔEDC 에서 \overline{CD} 는 공통,

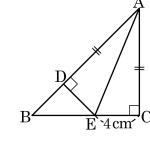
해설

 $\angle CAD = \angle CED = 90^{\circ}$, $\overline{DE} = \overline{AD}$ 이므로 \triangle ADC = \triangle EDC 는 RHS 합동이다.

 $\triangle ABC$ 가 직각 이등변삼각형이므로 $\angle y = 45^{\circ}$,

 $\angle ACB = \angle y = 45^\circ$ 에서 $\angle DCB = \angle x = \frac{1}{2} \times 45^\circ = 22.5^\circ$ 이다. 따라서 $\angle x + \angle y = 22.5 + 45 = 67.5^\circ$ 이다.

15. 다음 직각삼각형 ABC 에서 $\overline{AC} = \overline{AD}$ 인 점 D 를 잡고 $\overline{AB} \bot \overline{DE}$ 인 점 E 를 잡았다. $\overline{EC} = 4 \text{cm}$ 일 때, \overline{DE} 의 길이를 구하여라.



 $\underline{\mathrm{cm}}$

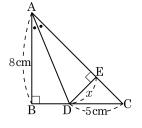
▷ 정답: 4<u>cm</u>

▶ 답:

 $\overline{\rm DE} = \overline{\rm EC} = 4 {\rm cm}$

 $\triangle ACE \equiv \triangle ADE(RHS합동)$ 이므로

16. 다음 그림과 같이 직각이등변삼각형 ABC 에서 \overline{AD} 가 $\angle A$ 의 이등분선이고, 점 D 에서 \overline{AC} 에 내린 수선의 발을 E 라고 할 때 x 의 길이를 구하여라.



답:▷ 정답: 3<u>cm</u>

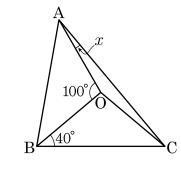
해설

 $\overline{AB} = \overline{BC}$, $\overline{BD} = \overline{BC} - \overline{DC} = 8cm - 5cm = 3cm$ \overline{AD} 는 $\angle BAE$ 를 이등분하므로, $\triangle ABD \equiv \triangle AED$ (RHS 합동)

 $\underline{\mathrm{cm}}$

∴ $\overline{DE} = \overline{BD}$ 따라서 $\overline{DE} = 3 \mathrm{cm}$ 이다.

17. 다음 $\triangle ABC$ 의 외심을 O 라고 할 때, $\angle x$ 의 크기는?



해설

② 20°

③ 30°

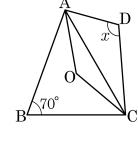
④ 40°

⑤ 50°

 $\triangle AOB$ 에서 \overline{AO} = \overline{BO} 이므로, $\angle OAB$ = $\angle OBA$, 100° +

①10°

 $\angle OAB + \angle OBA = 180^{\circ}$, $\angle OBA = 40^{\circ}$ $\angle OBC = \angle OCB = 40^{\circ}$, $\angle x + \angle OBA + \angle OCB = 90^{\circ}$, $x + 40^{\circ} + 40^{\circ} = 90^{\circ}$, $\therefore \angle x = 10^{\circ}$. 18. 다음 그림에서 \triangle ABC 와 \triangle ADC 의 외심은 O 로 동일하고 \angle ABC = 70° 일 때, \angle ADC 의 크기를 구하여라.



➢ 정답: 110°

▶ 답:

해설

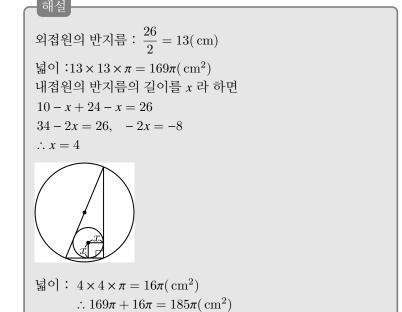
 $\angle OAD = a$, $\angle OCD = b$ 라고 하고, \overline{OD} 를 그으면 $\angle D = a + b$

 $\angle AOC = 2\angle ABC = 140^{\circ}$

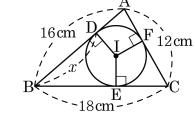
 $\square AOCD$ of Addition and $\square AOCD + \angle ADC + \angle DCO + \angle COA = 360^{\circ}$, $360^{\circ} = 140^{\circ} + a + b + a + b = 140^{\circ} + 2(a + b)$, $a + b = \angle ADC = 110^{\circ}$

19. 세 변의 길이가 각각 $10\,\mathrm{cm}, 24\,\mathrm{cm}, 26\,\mathrm{cm}$ 인 직각삼각형의 외접원과 내접원의 넓이의 합을 구하여라.

답: <u>cm²</u>
 > 정답: 185π <u>cm²</u>



20. 다음 그림에서 점 I 는 \triangle ABC 의 내심이다. 이 때, $\overline{\mathrm{BD}}$ 의 길이 x 를 구하여라.



 $\underline{\mathrm{cm}}$

▷ 정답: 11<u>cm</u>

답:

점 I 가 삼각형의 내심이므로 $\overline{AD}=\overline{AF}, \overline{BE}=\overline{BD}, \overline{CE}=\overline{CF}$

 $\overline{
m BD}=x=\overline{
m BE}$ 이므로 $\overline{
m CE}=18-x=\overline{
m CF}$, $\overline{
m AD}=16-x=\overline{
m AF}$

해설

 $\overline{AC} = \overline{AF} + \overline{CF} = 18 - x + 16 - x = 12$ $\therefore x = 11(\text{cm})$