- 1. 영이의 4 회에 걸친 음악 성적이 90, 84, 88, 94 이다. 다음 시험에서 몇 점을 받아야 평균이 90 점 되겠는가?
 - ① 88 점 ② 90 점 ③ 92 점 ④ 94 점 ⑤ 96 점

해설

다음에 받아야 할 점수를 x 점이라고 하면 $(평균) = \frac{90 + 84 + 88 + 94 + x}{5} = 90, \quad \frac{356 + x}{5} = 90, \quad 356 + x = 450 \quad \therefore \quad x = 94$ 따라서 94 점을 받으면 평균90 점이 될 수 있다.

2. 다음은 5 명의 학생의 50m 달리기 결과의 편차를 나타낸 표이다. 이 5 명의 50m 달리기 결과의 평균이 7점 일 때, 영진이의 성적과 표준편차를 차례대로 나열한 것은?

이듬	윤숙	태경	혜진	노경	영진
편차(점)	-1	1.5	х	0.5	0

① 5점, $\sqrt{0.8}$ kg ② 6점, $\sqrt{0.9}$ kg ③ 6점, 1kg ④ 7점, $\sqrt{0.9}$ kg ⑤ 8점, 1kg

해설

영진이의 성적은 7 - 0 = 7(점) 또한, 편차의 합은 0 이므로 -1 + 1.5 + x + 0.5 + 0 = 0, x + 1 = 0 $\therefore x = -1$

따라서 분산이 $\frac{(-1)^2 + 1.5^2 + (-1)^2 + 0.5^2 + 0^2}{5} = \frac{4.5}{5} = 0.9$

이므로 표준편차는 $\sqrt{0.9}\,\mathrm{kg}$ 이다.

3. 다음 표는 A, B, C, D, E 인 5 명의 학생의 수학 쪽지 시험의 결과를 나타낸 것이다. 이 자료의 분산은? 학생 A B C D E

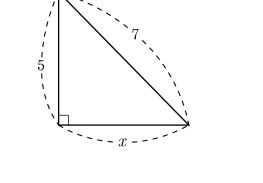
1 0	**				
변량(점)	7	9	6	7	6

① 1 ② 1.2 ③ 1.4 ④ 1.6 ⑤ 1.8

주어진 자료의 평균은 $\frac{7+9+6+7+6}{5} = \frac{35}{5} = 7(점)$

이므로 각 자료의 편차는 0, 2, -1, 0, -1 이다. 따라서 분산은 $\frac{0^2 + 2^2 + (-1)^2 + 0^2 + (-1)^2}{5} = \frac{6}{5} = 1.2$

4. 다음을 만족하는 x 의 값을 구하여라.



빗변이 7 인 직각삼각형이므로 피타고라스 정리에 의해 $x^2+5^2=$

해설

7² 성립해야 하므로 $x^2 = 7^2 - 5^2$

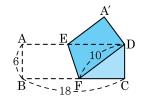
$$=49-$$

$$=49-25$$

$$= 24$$

$$\therefore x = \sqrt{24} = 2\sqrt{6} \ (\because x > 0)$$

5. 다음 그림은 직사각형 ABCD 의 점 B 가 점 D 에 오도록 접은 것이다. BF 의 길이는?



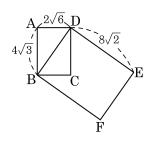
⑤ 18

① 10 ② 12 ③ 14 ④ 16

 $\overline{BF} = \overline{FD}$ $\therefore \overline{BF} = 10$

해설

6. 다음 그림과 같이 직사각형 ABCD 의 대 각선을 한 변으로 하는 직사각형 BDEF 의 넓이는?



① 24 ② 48 ③ 72

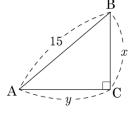
496

⑤ 124

삼각형 ABD 에서 피타고라스 정리에 따라

 $\sqrt{(2\sqrt{6})^2 + (4\sqrt{3})^2} = 6\sqrt{2}$ 따라서 직사각형 BDEF의 넓이는 $6\sqrt{2} \times 8\sqrt{2} = 96$ 이다.

7. $\cos A = \frac{1}{3}$ 인 직각삼각형 ABC 에서 xy 의 값을 구하여라. (단, $0^{\circ} < A < 90^{\circ}$)



▶ 답:

> 정답: 50√2

해설

빗변의 길이가 주어진 경우 $y = \overline{AC} = \overline{AB} \times \cos A \text{ 이므로}$ $y = 15 \times \frac{1}{3} = 5 \text{ 이다.}$

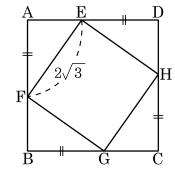
파타고라스 정리에 의해 $x=\sqrt{15^2-5^2}=\sqrt{200}=10\sqrt{2}$ 이다. 따라서 $xy=5\times 10\sqrt{2}=50\sqrt{2}$ 이다.

8. 이차방정식 $3x^2 + ax - \frac{5}{4} = 0$ 의 한 근이 $\cos 60^\circ$ 일 때, 상수 a 의 값을 구하여라.

▶ 답: ▷ 정답: 1

해설 이차방정식의 한 근이 $\frac{1}{2}$ 이므로 x 의 값에 대입하면 $\frac{3}{4} + \frac{1}{2}a - \frac{5}{4} = 0$ 2a = 2 a = 1 이다.

다음 그림과 같이 정사각형 ABCD 에서 $\operatorname{\overline{AF}}=\operatorname{\overline{BG}}=\operatorname{\overline{CH}}=\operatorname{\overline{DE}}$ 이고 9. $\overline{\mathrm{AE}}$: $\overline{\mathrm{DE}}=1$: $\sqrt{2}$ 일 때, 정사각형 ABCD 의 둘레의 길이는?

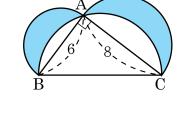


- ① $4(\sqrt{2}+1)$ ② $8(\sqrt{3}+1)$ 4 8($\sqrt{2}+1$) 3 8($\sqrt{2}+2$)
- $3 4(\sqrt{3}+2)$

 $\overline{
m AE}:\overline{
m DE}=1:\sqrt{2}$ 이므로 $\overline{
m AE}=x$ 라 하면 $\overline{
m DE}=\sqrt{2}x$

 \triangle AEF 에 피타고라스 정리를 적용하면 $12=x^2+2x^2=3x^2$ 이 되어 x = 2 이 성립한다. 따라서 $\square ABCD$ 의 둘레의 길이는 $4\left(2+2\sqrt{2}\right)=8\left(1+\sqrt{2}\right)$ 이다.

 ${f 10}$. 다음 그림에서 직각삼각형 ABC 에서 ${f AB}=6$, ${f AC}=8$ 일 때, 어두운 부분의 넓이를 구하여라.



▶ 답:

▷ 정답: 24

어두운 부분의 넓이는 ΔABC 와 같으므로 $\therefore \frac{1}{2} \times 6 \times 8 = 24$

11. 높이가 6 cm 인 정삼각형의 넓이를 구하면?

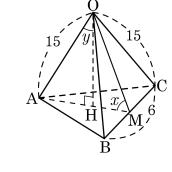
- ① 6 cm^2 ② 9 cm^2 ③ $9 \sqrt{3} \text{ cm}^2$ ④ $10 \sqrt{2} \text{ cm}^2$

정삼각형의 한 변의 길이를
$$a \, \mathrm{cm}$$
라 하면, 높이 $h = \frac{\sqrt{3}}{2} a$ 이므로 $\frac{\sqrt{3}}{2} a = 6$ $\therefore a = 4\sqrt{3}$ 따라서, 넓이

$$S = \frac{\sqrt{3}}{2}a^2 = \frac{\sqrt{3}}{2}a^2$$

따라서, 넓이
$$S = \frac{\sqrt{3}}{4}a^2 = \frac{\sqrt{3}}{4}(4\sqrt{3})^2 = 12\sqrt{3} \text{ (cm}^2) 이다.}$$

12. 다음 그림과 같이 모서리의 길이가 15 인 정사면체의 한 꼭짓점 O에서 밑면에 내린 수선의 발을 H라 하고, \overline{BC} 의 중점을 M이라 하자. 이때, 정사면체의 높이 \overline{OH} 의 값을 구하여라.



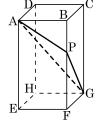
> 정답: 5√6

▶ 답:

해설

 $\overline{OH} = \frac{\sqrt{6}}{3} \times 15 = 5\sqrt{6}$

13. 다음 그림의 직육면체는 $\overline{AB} = 3\sqrt{3}$, $\overline{BC} = 2\sqrt{3}$, $\overline{AE} = 5$ 이고, \overline{AG} 는 직육면체의 대각선이다. 점 P 는 점 A 에서 G 까지 직육면체의 표면을 따라 갈 때 최단거리가 되게 하는 \overline{BF} 위의 점일 때, ΔPAG 의 둘레의 길이를 구하여라.



▷ 정답: 18

▶ 답:

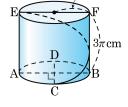
해설

 $\overline{AP} + \overline{PG} = \sqrt{(3\sqrt{3} + 2\sqrt{3})^2 + 5^2} = 10$

또, 대각선 $\overline{AG} = \sqrt{(3\sqrt{3})^2 + (2\sqrt{3})^2 + 5^2} = 8$ ∴ (△PAG의 둘레의 길이) = 10 + 8 = 18

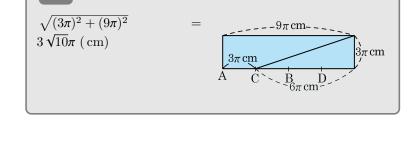
14. 다음 그림과 같이 밑면인 원의 반지름의 길이 6 cm 가 $6\,\mathrm{cm}$, 높이가 $3\pi\,\mathrm{cm}$ 인 원기둥에서 밑면의 지름 AB 와 수직인 지름 CD 에 대하여 점 C 에서 점 E 까지 원기둥의 옆면을 따라 오른쪽 으로 올라갈 때의 최단 거리를 구하여라. (단, $\overline{\rm AB}\,/\!/\,\overline{\rm EF})$

 $\underline{\mathrm{cm}}$



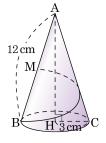
ightharpoonup 정답: $3\sqrt{10}\pi$ $\underline{\mathrm{cm}}$

▶ 답:



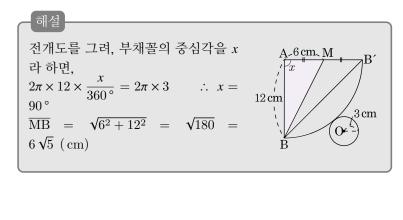
면의 반지름의 길이가 $3 \, \mathrm{cm}$ 인 원뿔이 있다. 모선 AB 의 중점을 M 이라 하고, 점 B 로부터 원뿔의 옆면을 따라 한 바퀴 돌아 점 M 으로 갈 때, 최단 거리를 구하여라.

15. 다음 그림과 같이 모선의 길이가 $12 \, \mathrm{cm}$ 이고, 밑



ightharpoonup 정답: $6\sqrt{5}$ $\overline{\mathrm{cm}}$

▶ 답:



 $\underline{\mathrm{cm}}$

16. 다음 그림과 같이 $\angle C$ 가 둔각인 $\triangle ABC$ 에서 $\overline{AB}=9$, $\overline{AC}=6$ 이고, $\angle A$ 의 이등분선이 변 BC 와 만나는 점을 D 라 하면 $\overline{BD}=3$ 이다. 이 때, 점 A 에서 변 BC 의 연장선에 내린 수선 \overline{AH} 의 길이를 구하여라.



▷ 정답: 4√2

▶ 답:

조ABC 에서 $\angle BAD = \angle CAD$ 이므로 $\overline{AB}: \overline{AC} = \overline{BD}: \overline{DC}$ $9: 6=3: \overline{DC}: \overline{DC} = 2$ 직각삼각형 ABH 에서 $\overline{CH} = x$, $\overline{AH} = h$ 라 하면 $h^2 = 9^2 - (3+2+x)^2 \cdots$ ①
마찬가지로 $\triangle ACH$ 에서 $h^2 = 6^2 - x^2 \cdots$ ⑥
①-⑥에서 $9^2 - (x+5)^2 = 6^2 - x^2$ $81 - x^2 - 10x - 25 = 36 - x^2$ -10x = -20 $\therefore x = 2$ x = 2 를 ⑥에 대입하면 $h^2 = 6^2 - 2^2 = 32$ $\therefore h = 4\sqrt{2}$ $(\because h > 0)$

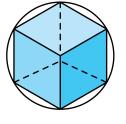
17. $\overline{AB}=3, \ \overline{BC}=5, \ \overline{CD}=6, \ \overline{DA}=4$ 인 사각형 ABCD 의 대각선의 길이가 각각 $2\sqrt{10}$, $3\sqrt{5}$ 일 때, 두 대각선의 중점 사이의 거리를 구하 여라

ightharpoonup 정답: $rac{1}{2}$

▶ 답:

해설 대각선 \overline{AC} , \overline{BD} 의 중점을 각각 F, E 라 하고, 보조선 BF 와 DF 를 그으면 ΔABC 에서 파푸스의 정리에 의해 $3^2 + 5^2 = 2(\overline{BF^2} + \overline{AF^2}) \cdots \textcircled{1}$ △ADC 에서 파푸스의 정리에 의해 $4^2 + 6^2 = 2(\overline{DF^2} + \overline{AF^2}) \cdots 2$ ① + ② 을 하면 $3^2 + 4^2 + 5^2 + 6^2 = 2(\overline{BF^2} + \overline{DF^2}) + 4\overline{AF^2}$ ΔBFD 에서 파푸스의 정리에 의해 $\overline{\mathrm{BF^2}} + \overline{\mathrm{DF^2}} = 2(\overline{\mathrm{EF^2}} + \overline{\mathrm{DE^2}}) \cdots 3$ 또, $\overline{AC} = 2\overline{AF}$ 이므로 $\overline{AC^2} = 4\overline{AF^2} \cdots$ ④ $\overline{\mathrm{BD}} = 2\overline{\mathrm{DE}}$ 이므로 $\overline{\mathrm{BD}}^2 = 4\overline{\mathrm{DE}^2} \cdots$ ⑤ $3^2 + 4^2 + 5^2 + 6^2$ $=2(\overline{BF^2}+\overline{DF^2})+4\overline{AF^2}$ $=4(\overline{DE^2} + \overline{EF^2}) + 4\overline{AF^2} (:: 3)$ $=4\overline{AF^2}+4\overline{DE^2}+4\overline{EF^2}$ $= \overline{AC^2} + \overline{BD^2} + 4\overline{EF^2} \; (\because \; \textcircled{4}, \; \textcircled{5})$ 따라서, $86 = (2\sqrt{10})^2 + (3\sqrt{5})^2 + 4\overline{EF^2}$ 이므로 $\overline{EF} = \frac{1}{2}$ 이다.

18. 다음 그림과 같이 한 모서리의 길이가 $8 \, \mathrm{cm}$ 인 정육면체에 외접하는 구의 반지름의 길이를 구하여라.



ightharpoonup 정답: $4\sqrt{3}$ $\underline{\mathrm{cm}}$

▶ 답:

해설

정육면체에 외접하는 구의 중심은 정육면체의 두 대각선의 교점

이므로 구의 반지름은 대각선의 길이의 반이다.

 $\underline{\mathrm{cm}}$

(반지름) =
$$\frac{1}{2}$$
 × (대각선의 길이)
= $\frac{1}{2}$ × $\sqrt{8^2 + 8^2 + 8^2}$
= $\frac{1}{2}$ × $8\sqrt{3}$
= $4\sqrt{3}$

$$=4\sqrt{3}$$