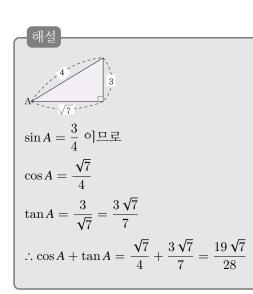
1. 다음 그림과 같이 한 변의 길이가 $4\sqrt{6}$ 인 마름모의 넓이를 구하여라.


▶ 답:

▷ 정답: 48√3

 $\Delta {
m ABC}$ 는 한 변의 길이가 $4\sqrt{6}$ 인 정삼각형이므로 넓이는 $\frac{\sqrt{3}}{4} \times (4\sqrt{6})^2 = 24\sqrt{3}$ 이다. 따라서 마름모의 넓이는 $2 \times 24\sqrt{3} = 48\sqrt{3}$ 이다.

- $\sin A = \frac{3}{4}$ 일 때, $\cos A + \tan A$ 의 값은?

 - ① $\frac{16\sqrt{7}}{27}$ ② $\frac{17\sqrt{7}}{27}$ ③ $\frac{2\sqrt{7}}{3}$ ③ $\frac{2\sqrt{7}}{3}$

3. 다음 삼각비의 표를 보고 다음 식의 값을 구하여라.

각도 sin cos tan
 25°
 0.42
 0.90
 0.46

 50°
 0.76
 0.63
 1.19

 70°
 0.93
 0.34
 2.74

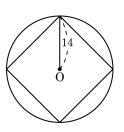
 $\cos 50^\circ + \cos 25^\circ \times \sin 50^\circ - \tan 25^\circ$

➢ 정답 : 0.854

▶ 답:

(준식) = $0.63 + 0.90 \times 0.76 - 0.46$

해설


= 0.63 + 0.684 - 0.46 = 0.854

4. 직각삼각형 ΔABC 의 세 변의 길이가 4, 5, x 일 때, 가능한 x 의 값을 모두 구하면? (정답 2개)

5가 가장 긴 변일 때, $x^2 + 4^2 = 5^2$ $\therefore x = 3$

x가 가장 긴 변일 때, $4^2+5^2=x^2$ $\therefore x=\sqrt{41}$

5. 반지름의 길이가 14 인 원 안에 정사각형이 내접해 있다. 정사각형의 한 변의 길이는 ?

① $10\sqrt{2}$ ② $12\sqrt{3}$ ③ $12\sqrt{2}$ ④ $14\sqrt{3}$ ⑤ $14\sqrt{2}$

해설

한 변의 길이를 a 라고 하면 $\sqrt{2}a=28$ 이므로 $a = \frac{28}{\sqrt{2}} = \frac{28\sqrt{2}}{2} = 14\sqrt{2}$

$$a = \frac{14}{\sqrt{2}} = \frac{14}{2}$$

- **6.** 두 점 P(2, 2), Q(a, -1) 사이의 거리가 $3\sqrt{5}$ 일 때, a 의 값은? (단, 점 Q 는 제3 사분면의 점이다.)
 - ① -8 ② -6 ③ -4 ④ 4 ⑤ 8

 $\sqrt{(2-a)^2+3^2}=3\sqrt{5}$ 에서 a=-4, 8 이다. 점 Q 는 제3 사분면 위에 있으므로 $a<0,\ a=-4$ 이다.

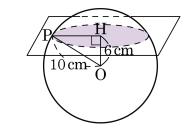
해설

7. 어떤 정육면체의 대각선의 길이가 9 일 때, 이 정육면체의 한 모서리의 길이는?

① $2\sqrt{3}$ ② $3\sqrt{3}$ ③ $6\sqrt{3}$ ④ 6 ⑤ $2\sqrt{6}$

한 모서리의 길이가 a인 정육면체의 대각선의 길이는 $\sqrt{a^2+a^2+a^2}=\sqrt{3}a$ 이므로 $\sqrt{3}a=9$ 에서 $a=3\sqrt{3}$ 이다.

8. 한 모서리의 길이가 $6\sqrt{6}$ 인 정사면체의 높이 는?



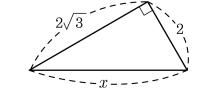
① $2\sqrt{6}$ ② $3\sqrt{6}$ ③ $4\sqrt{2}$ ④ 12

⑤ 13

한 모서리의 길이가 a 인 정사면체의 높이는 $h=\frac{\sqrt{6}}{3}a$ 이므로 $\therefore h=\frac{\sqrt{6}}{3}\times 6\sqrt{6}=12$

다음 그림과 같이 반지름의 길이가 10cm 인 구를 중심 O 에서 6cm 9. 떨어진 평면으로 자를 때 생기는 단면의 넓이는?

- ① $24\pi\,\mathrm{cm}^2$ $456\pi\,\mathrm{cm}^2$
- $2 32\pi\,\mathrm{cm}^2$ \bigcirc $64\pi\,\mathrm{cm}^2$
- $36\pi\,\mathrm{cm}^2$


해설

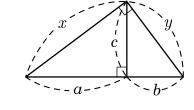
 $\overline{ ext{PH}} = \sqrt{10^2 - 6^2} = 8 (ext{ cm})$ ∴ (단면의 넓이) = $64\pi ext{ cm}^2$

- $\cos 0^{\circ} = 1$, $\cos 90^{\circ} = 0$ ④ $\tan 0^{\circ} = 0$, $\tan 45^{\circ} = 1$
- $\sin 0^{\circ} = 0$, $\sin 90^{\circ} = 1$ ② $\sin 60^{\circ} = \cos 30^{\circ} = \frac{1}{2}$

 $\sin 30^{\circ} = \cos 60^{\circ} = \frac{1}{2}$, $\sin 60^{\circ} = \cos 30^{\circ} = \frac{\sqrt{3}}{2}$

11. 다음 그림의 직각삼각형의 둘레의 길이는?

(4) $3 + 2\sqrt{6}$ (5) $2 + 6\sqrt{3}$


① $6 + 2\sqrt{3}$ ② $3 + 6\sqrt{2}$ ③ $2 + 3\sqrt{6}$

피타고라스 정리에 따라 $(2\sqrt{3})^2 + 2^2 = x^2$ $x^2 = 12 + 4 = 16$

x > 0 이므로 x = 4 이다.

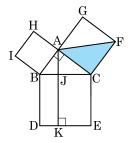
따라서 둘레의 길이는 $4+2+2\sqrt{3}=6+2\sqrt{3}$ 이다.

12. 다음 중 옳은 것을 고르면?

①
$$x^2 - a^2 = y^2 - b^2$$
 ② $a^2 + c^2 = y^2$
③ $y^2 - c^2 = x^2 - c^2$ ④ $b^2 = x^2 - c^2$

① 피타고라스 정리에 따라

 $x^2 = a^2 + c^2$ $c^2 = x^2 - a^2$ 이고 $c^2 + b^2 = y^2$ $c^2 = y^2 - b^2$ 이므로 $x^2 - a^2 = y^2 - b^2$ 이다.

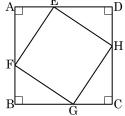

$$c^2 = x^2 - a^2$$

 $c^2 + b^2 = y^2$

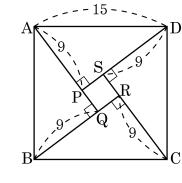
$$c^2 + b^2 = y^2$$

$$x^2 - a^2 = y^2 - a^2$$

13. 다음 그림과 같이 $\angle A = 90\,^{\circ}$ 인 직각삼각형 ABC 에서 세 변 \overline{AB} , \overline{BC} , \overline{CA} 를 각각 한 변으로 하는 정사각형을 그렸다. 다음 중 $\triangle ACF$ 와 넓이가 같은 것은 모두 몇 개인가?


해설

 $\triangle ACF = \triangle BCF = \frac{1}{2}\Box CEKJ = \triangle ACE$


14. 다음 그림에서 $\square ABCD$ 는 정사각형이고 \overline{AE} = \overline{BF} = \overline{CG} = \overline{DH} = 4cm 이다. □ABCD 의 넓이가 100 cm² 일 때, EF 의 길이는?

- \bigcirc 8 cm
- $\bigcirc 3\sqrt{6}\,\mathrm{cm}$ $40 2 \sqrt{13} \, \text{cm}$ $5 10 \, \text{cm}$
- 3 9 cm

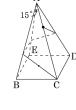
 $\triangle \mathrm{AFE}$ 에서 $\overline{\mathrm{AE}} = 4\,\mathrm{cm}$, $\overline{\mathrm{AF}} = 6\,\mathrm{cm}$ 이므로 $\overline{\text{EF}} = \sqrt{6^2 + 4^2} = \sqrt{52} = 2\sqrt{13}\,\text{cm}$

15. □ABCD 는 한 변의 길이가 15 인 정사각형이고 $\overline{AP} = \overline{BQ} = \overline{CR} = \overline{DS} = 9$ 일 때, □PQRS 의 넓이로 적절한 것은?

⑤ 11

① 1 ② 3 ③ 5

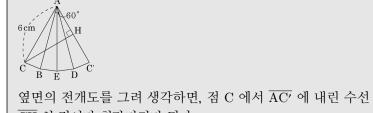
 $\overline{AQ} = \sqrt{15^2 - 9^2} = \sqrt{225 - 81} = 12$ $\overline{PQ} = 12 - 9 = 3$ □PQRS 는 정사각형이므로 넓이는 $3 \times 3 = 9$


- 16. 다음 그림과 같이 $\overline{AB} = \overline{BC}$ 이고 $\overline{AC} =$ $10\,\mathrm{cm}$ 인 이등변삼각형 ABC 의 변 $\overline{\mathrm{AC}}$ 를 한 변으로 하는 정삼각형 CDA 를 그렸더니 $\overline{\mathrm{BD}} = 8\sqrt{3}\,\mathrm{cm}$ 일 때, $\overline{\mathrm{AB}}$ 의 길이는? ① $\sqrt{13}$ cm $2\sqrt{14}\,\mathrm{cm}$
- 10cm +8√3cm
- $32\sqrt{13}\,\mathrm{cm}$
- $4 2\sqrt{14} \text{ cm}$
- $\bigcirc 2\sqrt{15}\,\mathrm{cm}$

$$\overline{DE} = \frac{\sqrt{3}}{2} \times 10 = 5\sqrt{3}$$

$$\overline{BE} = \overline{DB} - \overline{DE} = 8\sqrt{3} - 5\sqrt{3} = 3\sqrt{3}$$

$$\therefore \overline{AB} = \sqrt{5^2 + (3\sqrt{3})^2} = 2\sqrt{13} \text{ cm}$$


17. 다음 그림과 같이 $\overline{AB}=6\mathrm{cm}$, $\angle BAC=15^\circ$ 인 정사각뿔이 있다. 점 C 에서 옆면을 지나 \overline{AC} 에 이르는 최단거리를 구하여라.

 $\underline{\mathrm{cm}}$

> 정답: 3√3<u>cm</u>

▶ 답:

CH 의 길이가 최단거리가 된다.
 AC: CH = 2: √3 이므로

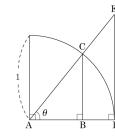
 $\therefore \overline{CH} = 6 \times \frac{\sqrt{3}}{2} = 3\sqrt{3}(cm)$

18. 4 sin 30° tan 45° cos 60° − 2 의 값을 구하여라.

답:

▷ 정답: -1

(준식) = $4 \times \frac{1}{2} \times 1 \times \frac{1}{2} - 2 = 1 - 2 = -1$


19. 다음 그림에서 x 의 값은?

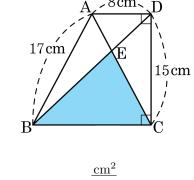
① $\sqrt{2}$ ② $\sqrt{3}$ ③ 2 ④ $2\sqrt{2}$ ⑤ $2\sqrt{3}$

해설

 $\overline{BC} = 2 \tan 60^{\circ} = 2 \times \sqrt{3} = 2 \sqrt{3}$ $\overline{CE} = \sqrt{6} \times \cos 45^{\circ} = \sqrt{6} \times \frac{1}{\sqrt{2}} = \sqrt{3}$ $\therefore x = \overline{BC} - \overline{CE} = 2\sqrt{3} - \sqrt{3} = \sqrt{3}$

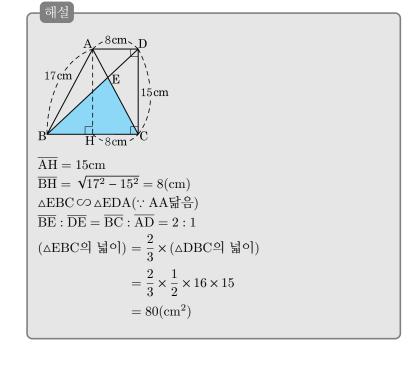
20. 다음 그림과 같이 반지름의 길이가 1 인 사분원이 있다. 다음 중 틀린 (단, *θ* 는 예각)

- $\Im \tan \theta = \overline{\mathrm{DE}}$

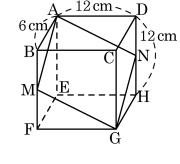

① $\sin \theta = \overline{BC}$

 $\triangle ADE$ 에서 $\tan \theta = \frac{\overline{DE}}{\overline{AD}} = \overline{DE}(\because \overline{AD} = 1)$

 $\sin\theta = \frac{\overline{BC}}{\overline{AC}} = \overline{BC}(\because \overline{AC} = 1) \ \circ] \ \mathcal{I}$

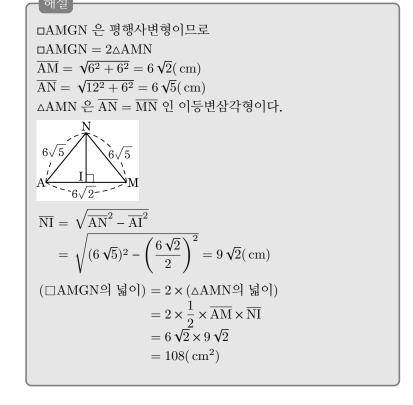

 $\overline{\mathrm{BC}} < \overline{\mathrm{DE}}$ 이므로 $\sin \theta < \tan \theta$

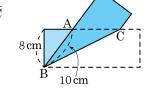
21. 다음 그림과 같은 사다리꼴 ABCD 에서 $\angle C=\angle D=90^\circ$, $\overline{AD}=8cm$, $\overline{AB}=17cm$, $\overline{DC}=15cm$ 일 때, $\triangle EBC$ 의 넓이를 구하여라.



 답:
 cm

 ▷ 정답:
 80 cm²


22. 다음 그림과 같은 직육면체에서 \overline{BF} 의 중점을 M , \overline{DH} 의 중점을 N 이라 할 때, $\square AMGN$ 의 넓이를 구하여라.


 $\underline{\mathrm{cm}^2}$

▷ 정답: 108<u>cm²</u>

▶ 답:

23. 다음 그림과 같이 폭이 8cm 인 종이 테이프 를 접었더니 $\overline{\mathrm{AB}}$ 의 길이가 $10\mathrm{cm}$ 일 때, $\overline{\mathrm{BC}}$ 의 길이를 구하여라.

<mark>▷ 정답:</mark> 8√5<u>cm</u>

▶ 답:

Ě $\triangle ABD$ 에서 $\overline{AD}^2 = \overline{AB}^2 - \overline{BD}^2 = 10^2 - 8^2 = 36$.: $\overline{AD} =$ 6(cm) $\angle ABC = \angle CBE$, $\angle CBE = \angle ACB$ (∵ 엇각) $\therefore \angle ABC = \angle ACB$ 따라서 $\triangle ABC$ 는 이등변삼각형이다. $\therefore \overline{AC} = \overline{AB} = 10$ (cm) $\triangle BCD$ 에서 $\overline{BC}^2 = \overline{BD}^2 + \overline{CD}^2 = 8^2 + (6+10)^2 = 64 + 256 =$ $\therefore \ \overline{\mathrm{BC}} = \sqrt{320} = 8\sqrt{5} (\mathrm{cm}) \ (\because \ x > 0 \)$

 $\underline{\mathrm{cm}}$

24. 대각선의 길이가 $16\sqrt{2}$ 인 정사각형의 네 모서리에서 합동인 4 개의 직각이등변삼각형을 잘라내어 정팔각형을 만들었을 때, 이 정팔각형의 넓이를 구하여라.

▶ 답:

ightharpoonup 정답: $512\sqrt{2} - 512$

정사각형의 한 변의 길이를 *a* 라 하면

 $a^2 + a^2 = 512$, $\therefore a = 16$ 정팔각형의 한 변의 길이를 *x* 라 하면

잘라낸 귀퉁이는 두 변이 $\frac{\sqrt{2}}{2}x$ 로 같은 직각이등변삼각형이다. _ 그런데 정사각형의 한 변의 길이가 16 이므로

 $\frac{\sqrt{2}}{2}x + x + \frac{\sqrt{2}}{2}x = 16$

 $\therefore x = 16(\sqrt{2} - 1)$ 따라서 정팔각형의 넓이

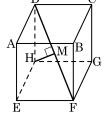
 $16^2 - \left\{ \frac{1}{2} \times (16 - 8\sqrt{2}) \times (16 - 8\sqrt{2}) \right\} \times 4 = 256 - 256(3 - 8\sqrt{2})$

 $2\sqrt{2}$) = $512\sqrt{2}$ – 512 이다.

25. 가로와 세로의 길이가 각각 4, 3 인 직사각형 ABCD 의 각 변 위에 점 P, Q, R, S 를 잡을 때, 사각형 PQRS 의 둘레의 최솟값을 구하여라.

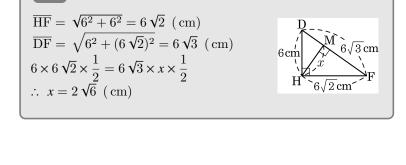
답:

▷ 정답: 10

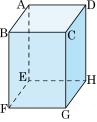

다음 그림과 같이 $\square ABCD$ 와 합동인 직사각형을 작도하여 점 P 를 각각 변 AB 와 CD 에 대해 대칭이동한 점 $P_1,\ P_2$ 를 잡으면

 $G = \begin{bmatrix} Q & & & & \\ Q & & & & \\ \hline P_3 & & & & \\ \hline P\overline{Q} + \overline{Q}\overline{R} = \overline{P_1Q} + \overline{Q}\overline{R} \end{bmatrix}$

 $\overline{PS} + \overline{SR} = \overline{P_2S} + \overline{SR}$ 다시, 점 P_1 , Q 를 GB 에 대해 대칭이동한 점 P_3 , Q' 를 잡으면

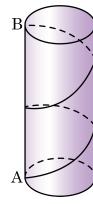

 $\overline{P_1Q} + \overline{QR} = \overline{P_3Q'} + \overline{Q'R}$ 이 되어 $\square PQRS$ 의 둘레의 길이의 최솟값은 $\overline{P_2P_3}$ 의 길이가 된다. 따라서 $\overline{P_2P_3} = \sqrt{\overline{P_3H^2} + \overline{P_2H^2}} = \sqrt{8^2 + 6^2} = 10$ 이다.

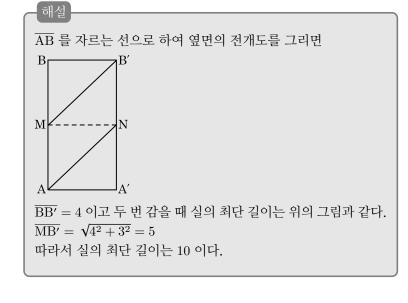
26. 다음 그림과 같이 한 모서리의 길이가 $6 \, \mathrm{cm}$ 인 정육면체에서 꼭짓점 H 에서 대각선 DF 에 내린 수선 HM 의 길이를 구하여라.

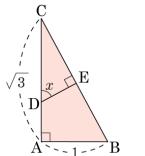

ightharpoonup 정답: $2\sqrt{6}$ $\underline{\mathrm{cm}}$

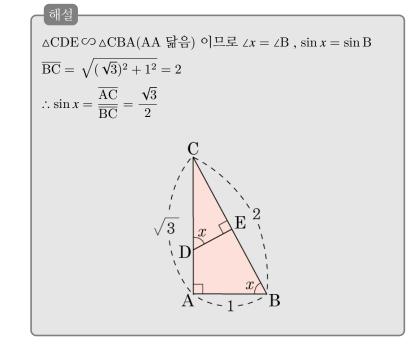
▶ 답:

 $\underline{\mathrm{cm}}$


27. 다음 그림과 같이 $\overline{AB} = \overline{AD} = 3$, $\overline{AE} = 4$ 인 직육면체의 한 점 A 에서 겉면을 따라 점 G 에 이르는 최단 거리를 구하여라.


답: ightharpoonup 정답: $2\sqrt{13}$


28. 다음 그림과 같이 밑면의 둘레의 길이가 4 이고, 높이가 6 인 직원 기둥의 겉면을 따라 A 에서 B 까지 두 바퀴 감은 실을 최단 길이를 구하여라.


답:▷ 정답: 10

29. 다음 그림에서 $\sin x$ 의 값은?

① $\sqrt{2}$ ② $\frac{\sqrt{2}}{2}$ ③ $\frac{\sqrt{3}}{2}$ ④ $\sqrt{3}$ ⑤ $\frac{\sqrt{3}}{3}$

