
1. 삼각형의 세 변의 길이가 다음 보기와 같을 때 직각삼각형이 되는 것을 골라라.

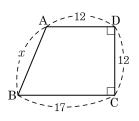
型プ ① $(1, \sqrt{2}, \sqrt{3})$ © $(\sqrt{3}, \sqrt{3}, 3)$ © $(\sqrt{3}, \sqrt{4}, \sqrt{5})$ ② $(2, 3, \sqrt{3})$

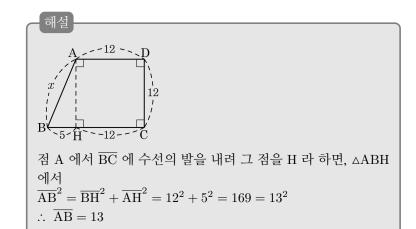
해설

$$\sqrt{3}^2 = \sqrt{2}^2 + 1^2$$

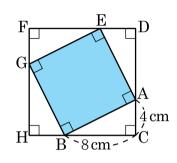
2. 다음 그림과 같은 직각삼각형 $\triangle ABC$ 에서 $\sin A$ 의 값은 얼마인가?

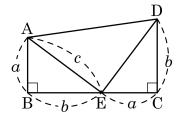
①
$$\frac{2\sqrt{41}}{41}$$


$$\stackrel{\bigcirc}{\mathbb{S}} \frac{41}{41}$$


해설
$$\overline{AB} = \sqrt{5^2 + 4^2} = \sqrt{41}$$

$$\therefore \sin A = \frac{\overline{BC}}{\overline{AB}} = \frac{4}{\sqrt{41}} = \frac{4\sqrt{41}}{41}$$


3. 다음 사각형 ABCD 에서 \overline{AB} 의 길이를 구하여라.



4. 다음 그림의 □FHCD 는 △ABC 와 합동인 직각삼각형을 이용하여 만든 사각형이다. □BAEG 의 넓이를 구하여라.

$$\overline{AB} = \sqrt{8^2 + 4^2} = \sqrt{64 + 16} = \sqrt{80} = 4\sqrt{5}$$

 $\Box BAEG = (4\sqrt{5})^2 = 80 \text{ (cm}^2)$

5. 다음은 그림을 이용하여 피타고라스 정리를 설명한 것이다.

(가),(나) 에 알맞은 것을 차례대로 쓴 것을 고르면?

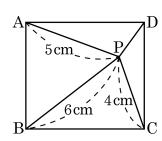
$$\triangle ABE + \triangle AED + \triangle ECD = \square ABCD$$
 이므로 $\frac{1}{2}ab + (7) + \frac{1}{2}ab = \frac{1}{2}(a+b)^2$ 따라서 (나)이다.

(1)
$$(7)$$
 $\frac{1}{2}c^2$ (1) $a^2 + b^2 = c^2$

② (가)
$$c^2$$
 (나) $b^2 + c^2 = a^2$

③
$$(7)$$
 $\frac{1}{2}c^2$ (4) $a^2 + b^2 = c$

④
$$(7)$$
 c^2 (1) $b^2 - a^2 = c^2$


⑤ (가)
$$\frac{1}{2}c^2$$
 (나) $a+b=c$

해설

 $\triangle ABE + \triangle AED + \triangle ECD = \square ABCD$ 이므로

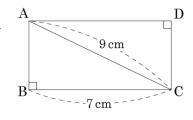
$$\frac{1}{2}ab + \frac{1}{2}c^2 + \frac{1}{2}ab = \frac{1}{2}(a+b)^2$$

따라서 $a^2 + b^2 = c^2$ 이다

6. 다음 그림과 같이 직사각형 ABCD 의 내부에 한 점 P가 있다. $\overline{AP}=5\,\mathrm{cm}, \overline{BP}=6\,\mathrm{cm}, \ \overline{CP}=4\,\mathrm{cm}$ 일 때, \overline{PD} 의 길이를 구하면?

① $3\sqrt{2}$ cm

② √5 cm


 $3 5\sqrt{2} \text{ cm}$

 $4 3\sqrt{3} \text{ cm}$

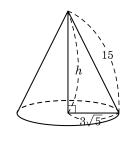
 \bigcirc $4\sqrt{5}$ cm

 $\overline{PD^2} + 6^2 = 5^2 + 4^2$, $\overline{PD} = \sqrt{5}$ cm

7. 가로의 길이가 7cm, 대각선의 길이 가 9cm 인 직사각형의 넓이를 구하 여라.

$$ightharpoonup$$
 정답: $28\sqrt{2}$ $\underline{\mathrm{cm}^2}$

해설


 $7^2 + x^2 = 9^2$

x 는 변의 길이이므로 양수이다.

따라서 $x = 4\sqrt{2}$ 이므로 직사각형의 넓이는 $4\sqrt{2} \times 7 = 28\sqrt{2}$ (cm²) 이다.

 cm^2

8. 다음 그림과 같이 밑면의 반지름의 길이가 3√5 이고 모선이 15 인 원뿔의 부피는?

 $90\sqrt{5}\pi$

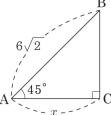
①
$$270\sqrt{5}\pi$$

(4) $6\sqrt{5}\pi$

②
$$45\sqrt{5}\pi$$
 ⑤ $8\sqrt{5}\pi$

 $\sqrt{5}\pi$

$$h = \sqrt{15^2 - \left(3\sqrt{5}\right)^2} = \sqrt{225 - 45} = 6\sqrt{5}$$
이므로

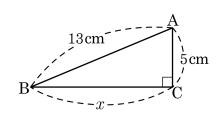

(원뿔의 부피) =
$$3\sqrt{5} \times 3\sqrt{5} \times \pi \times 6\sqrt{5} \times \frac{1}{3} = 90\sqrt{5}\pi$$

다음 그림에서
$$\angle BAC = 90^{\circ}$$
 이고, $\overline{BC} \perp \overline{AH}$ 이다. $\angle CAH = x$ 라 할 때, $\tan x$ 의 값은?

$$\tan x$$
의 값은?
 ① $\frac{2}{3}$ ② $\frac{3}{4}$ ③ $\frac{4}{5}$

 $\overline{AC} = \sqrt{15^2 - 12^2} = 9$ $\triangle ABC \hookrightarrow \triangle HAC \ (\because AA 닮음)$ $x = \angle ABC \circ \Box \Box \Xi \tan x = \frac{9}{12} = \frac{3}{4}$

10. 다음 그림과 같은 직각삼각형에서
$$x$$
 의 값을 구하여라.


 $\therefore x = 6$

$$\cos 45^{\circ} = \frac{x}{6\sqrt{2}} = \frac{\sqrt{2}}{2}, \ 2x = 12$$

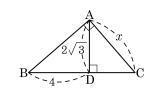
11. 직각삼각형 ABC 에서 $\overline{AB}=8 {\rm cm}$, $\overline{BC}=4\sqrt{3} {\rm cm}$ 일 때, $\angle B$ 의 크기는? C

해설
$$\cos x = \frac{4\sqrt{3}}{8} = \frac{\sqrt{3}}{2} \text{ 이므로 } x = 30^{\circ} \text{ 이다.}$$

12. 다음 그림에서 $\overline{\mathrm{BC}}$ 를 한 변으로 하는 정사각형의 둘레의 길이를 구하여라.

cm

답:


▷ 정답: 48cm

해설

피타고라스 정리를 활용하면 $13^2 = 5^2 + x^2$

 $x^2 = 169 - 25 = 144$

 $\therefore x = 12 \text{ (cm)} \ (\because x > 0 \)$ 따라서 \overline{BC} 를 한 변으로 하는 정사각형의 둘레는 $4 \times \overline{BC} = 4 \times 12 = 48 \text{ (cm)}$ 이다. **13.** 다음 그림에서 x 를 구하여라.

▶ 답:

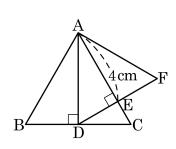
ightharpoonup 정답: $\sqrt{21}$

해설

△ABD 에 피타고라스 정리를 적용하면

 $\overline{AB} = 2\sqrt{7}$

△ABD와 △CAD는 ∠B를 공통각으로 가지고 각각 직각 한 개씩을 가지고 있으므로 닮은 꼴이다.


따라서 닮은 삼각형의 성질을 이용하면

 $\overline{AD} : \overline{AC} = \overline{BD} : \overline{AB}$ 이므로 $\overline{AC} \times \overline{BD} = \overline{AD} \times \overline{AB}$ 에서

 $4x = 2\sqrt{3} \times 2\sqrt{7}$

$$\therefore x = \sqrt{21}$$

14. 다음 그림과 같이 높이가 4cm 인 정삼각형 ADF 의 한 변을 높이로 하는 정삼각형 ABC 의 넓이를 고르면?

①
$$\frac{32\sqrt{3}}{9}$$
 cm² ② $\frac{40\sqrt{3}}{9}$ cm²
 ④ $\frac{56\sqrt{3}}{9}$ cm² ⑤ $\frac{64\sqrt{3}}{9}$ cm²

$$\frac{64\sqrt{3}}{9}$$
 cm²

$$\triangle ADF$$
 에서 $\overline{AE} = \frac{\sqrt{3}}{2}\overline{AD} = 4$ $\therefore \overline{AD} = \frac{8\sqrt{3}}{3}(cm)$

$$\triangle ABC$$
 에서 $\overline{AD} = \frac{\sqrt{3}}{2}\overline{AB} = \frac{8\sqrt{3}}{3}$ $\therefore \overline{AB} = \frac{16}{3}(cm)$

$$(\triangle ABC$$
의 넓이) $= \frac{1}{2} \times \frac{16}{3} \times \frac{8\sqrt{3}}{3} = \frac{64\sqrt{3}}{9}(cm^2)$

15. 좌표평면 위의 두 점 P (3, 2), Q (3a, a) 사이의 거리가 $\sqrt{37}$ 일 때, a 의 값을 구하여라. (단, 점 Q는 제 1사분면 위의 점이다.)

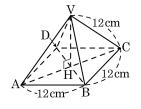
① 4 ②
$$3\sqrt{3}$$
 ③ $\frac{4}{5}$ ④ $\frac{5}{4}$

$$\overline{PQ} = \sqrt{37}$$
 이므로
$$37 = (3 - 3a)^2 + (2 - a)^2 = 10a^2 - 22a + 13$$
$$10a^2 - 22a + 13 = 37$$
이 되어

 $10a^2 - 22a - 24 = 0$ (10a + 8)(a - 3) = 0 $\therefore a = 3 \text{ (점 Q는 제 1 사분면위의 점이므로)}$ ${f 16}$. 대각선의 길이가 $9\,{
m cm}$ 인 정육면체의 겉넓이 a 의 값을 구하여라.

해설
$$\sqrt{3}a = 9 \Rightarrow a = 3\sqrt{3} \text{ cm}$$
 겉넓이는 $6 \times (3\sqrt{3} \times 3\sqrt{3}) = 6 \times 27 = 162(\text{ cm}^2)$ 이다.

a = 162


ightharpoonup 정답: $a = 162 \text{ cm}^2$

17. 다음 그림과 같이 부피가 $\frac{9}{4}\sqrt{2}$ 인 정사면체에서 한 모서리의 길이는?

①
$$\sqrt{2}$$
 ② $\sqrt{3}$ ③ 2 ④ 3 ⑤ $2\sqrt{3}$

모서리의 길이를
$$a$$
 라 하면 부피는 $\frac{\sqrt{2}}{12}a^3$
$$V = \frac{\sqrt{2}}{12}a^3 = \frac{9}{4}\sqrt{2} \quad \therefore a = 3$$

18. 다음 그림과 같이 밑면은 한 변의 길이가 12 cm 인 정사각형이고, 옆면의 모서리의 길이가 모두 12 cm 인 사각뿔이 있을 때, 이 사각뿔의 부피를 구하면?

①
$$72\sqrt{2} \text{ cm}^3$$

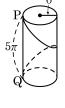
(3)
$$288 \sqrt{2} \, \text{cm}^3$$

사각뿔의 높이는
$$\sqrt{12^2 - (6\sqrt{2})^2} = 6\sqrt{2}$$
 (cm)
$$V = 12^2 \times 6\sqrt{2} \times \frac{1}{3} = 288\sqrt{2}$$
 (cm³)

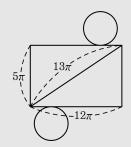
② $144\sqrt{2}\,\mathrm{cm}^3$

④
$$\frac{144}{3}\sqrt{2}\,\mathrm{cm}^3$$
 ⑤ $144\sqrt{3}\,\mathrm{cm}^3$
해설
사각뿔의 높이는 $\sqrt{12^2-\left(6\sqrt{2}\right)^2}=6\sqrt{2}$

19. 원기둥에서 그림과 같은 경로를 따라 점 P 에서 점 Q 에 이르는 최단 거리를 구하면?


 13π

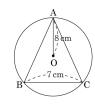
(4) 125π


 \bigcirc 15 π

(5) $\sqrt{150}\pi$

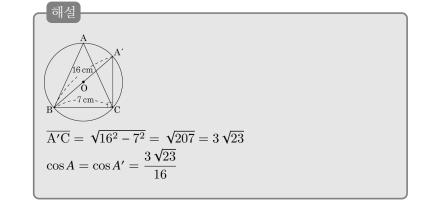
 361π

해설

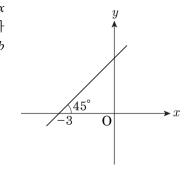

원기둥의 전개도를 그리면 다음과 같다.

따라서, 최단 거리는 직사각형(옆면)의 대각선의 길이와 같다. 직사각형의 가로의 길이는 밑면(원)의 둘레의 길이이므로 $2\pi \times$

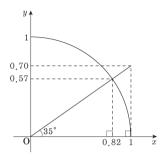
 $6 = 12\pi$ 이다.


따라서, 최단 거리는 $\sqrt{(5\pi)^2 + (12\pi)^2} = 13\pi$ 이다.

20. 다음 그림과 같이 $\overline{BC}=7\mathrm{cm}$ 인 ΔABC 에 외접하는 원 O 의 반지름의 길이가 $8\mathrm{cm}$ 일 때, $\cos A$ 의 값은?

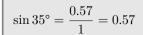


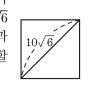
①
$$\frac{\sqrt{23}}{\frac{16}{4}}$$
 ② $\frac{\sqrt{23}}{\frac{8}{8}}$ ③ $\frac{5\sqrt{23}}{16}$

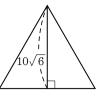

21. 다음 그림과 같이 x절편이 -3이고, x축의 양의 방향과 이루는 각의 크기가 45°인 직선의 방정식을 y = ax + b라 할 때, a + b의 값을 구하면?

$$y = ax + b$$
에서 기울기 $a = \tan 45^{\circ} = 1$
 $y = x + b$ 에서 $(-3,0)$ 을 대입하면 $0 = -3 + b, b = 3$

$$\therefore a+b=4$$


22. 다음 그림에서 $\cos 55^{\circ}$ 와 같은 값을 갖는 것은?


 $\sin 35^{\circ}$


① $\sin 55^{\circ}$

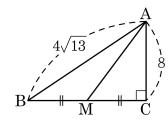
- $2 \tan 55^{\circ}$
- $\textcircled{4} \cos 35^{\circ}$ $\textcircled{5} \tan 35^{\circ}$
 - O tan 35

23. 다음 그림과 같이 대각선의 길이가 $10\sqrt{6}$ 인 정사각형과 높이가 $10\sqrt{6}$ 인 정삼각형이 있다. 정사각형과 정삼각형의 넓이를 각각 A, B 라 할 때. A: B 는?

①
$$\sqrt{2}:2$$

(4) $2: \sqrt{3}$

②
$$\sqrt{3}:2$$
 ③ $3:2$


③
$$\sqrt{3}:3$$

 $a^2 + a^2 = (10\sqrt{6})^2$

정삼각형의 한 변의 길이를
$$b$$
 라 하면, $b:10\sqrt{6}=2:\sqrt{3}$ $b=20\sqrt{2}$ \therefore $B=\frac{\sqrt{3}}{4}\times(20\sqrt{2})^2=200\sqrt{3}$

따라서,
$$A: B = 300: 200 \sqrt{3} = \sqrt{3}: 2$$
 이다.

 ${f 24.}$ 다음 직각삼각형 ABC 에서 점 M 이 변 BC 의 중점일 때, $\overline{
m AM}$ 의 길이를 구하여라.

▶ 답:

➢ 정답: 10

$$\overline{BC}^2 = (4\sqrt{13})^2 - 8^2 = 144$$

 $\therefore \overline{BC} = 12, \overline{MC} = 6$ $\therefore \overline{AM} = \sqrt{8^2 + 6^2} = 10$

25. 다음 삼각비의 표를 보고 $\sin 49^{\circ} + \tan 30^{\circ} - \cos 48^{\circ}$ 의 값을 구하여라.

각도	사인(sin)	코사인(cos)	탄젠트(tan)
30°	0.6293	0.7771	0.8098
40°	0.6428	0.7660	0.8391
41°	0.6561	0.7547	0.8693
42°	0.6691	0.7431	0.9004

▶ 답:

▷ 정답: 0.8954

해설

 $\sin 49^{\circ} = \cos (90^{\circ} - 49^{\circ}) = \cos 41^{\circ},$ $\cos 48^{\circ} = \sin (90^{\circ} - 48^{\circ}) = \sin 42^{\circ}$

(준식) = 0.7547 + 0.8098 - 0.6691 = 0.8954