- 1. 바구니에 축구공 6 개와 농구공 4 개가 들어있다. 이중에서 하나의 공을 꺼낼 때 축구공이 나올 확률은?
 - ① $\frac{3}{10}$ ② $\frac{2}{5}$ ③ $\frac{3}{5}$ ④ $\frac{7}{10}$ ⑤ 1

공의 수는 모두 10개, 그 중 축구공은 6 개 $\therefore \frac{6}{10} = \frac{3}{5}$

- 2. 1 부터 15 까지의 수가 각각 적힌 15 장의 카드에서 1 장을 뽑아 나온 수를 x 라 할 때, $\frac{x}{15}$ 가 유한 소수가 될 확률은?
 - ① $\frac{1}{10}$ ② $\frac{1}{5}$ ③ $\frac{2}{5}$ ④ $\frac{3}{10}$

유한소수는 분모의 소인수가 2, 5뿐 이어야 하므로 분모 15 를 소인수분해하면 3×5 에서 3 을 없애야 한다. 따라서 x 는 3 의 배수가 되어야 한다. 3 의 배수 x는 3,6,9,12,15 이므로 확률은 $\therefore \frac{5}{15} = \frac{1}{3}$

3. 축구부의 연습생 중에서 후보를 뽑으려고 한다. 10명의 연습생 중 2 명의 후보를 뽑는 경우의 수는?

① 20가지 ② 30가지 ③ 35가지 ④ 45가지 ⑤ 90가지

○ 10- |-

해설 $\frac{10 \times 9}{2} = 45 (가지)$

- **4.** 빨강, 분홍, 노랑, 초록, 보라의 5 가지 색 중에서 2 가지의 색을 뽑는 경우의 수는?
 - ① 6 가지 ② 10 가지 ③ 20 가지 ④ 60 가지 ⑤ 120 가지

해설

5 개 중에서 2 개를 선택하는 경우의 수이므로 $\frac{5\times 4}{2\times 1}=10$ (가지) 이다.

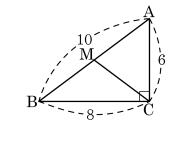
- 수를 a , 작은 주사위에서 나온 눈의 수를 b 라고 할 때, ax - b = 0 의 해가 2가 될 확률은?
 - ① $\frac{1}{3}$ ② $\frac{1}{4}$ ③ $\frac{1}{6}$ ④ $\frac{1}{12}$ ⑤ $\frac{1}{24}$

해가 2가 될 경우 (1, 2), (2, 4), (3, 6) 의 3가지이다. \therefore (확률) = $\frac{3}{36} = \frac{1}{12}$

6. 어느 시험에서 A가 합격할 확률은 $\frac{2}{3}$, B가 합격할 확률은 $\frac{3}{4}$ 이다. 이때, 적어도 한 사람이 합격할 확률은?

① $\frac{1}{2}$ ② $\frac{2}{3}$ ③ $\frac{1}{12}$ ④ $\frac{3}{4}$ ⑤ $\frac{11}{12}$

A가 불합격할 확률은 $1 - \frac{2}{3} = \frac{1}{3}$ B가 불합격할 확률은 $1 - \frac{3}{4} = \frac{1}{4}$


A, B가 모두 불합격할 확률은 $\frac{1}{3} \times \frac{1}{4} = \frac{1}{12}$ 따라서 구하는 확률은 $1 - \frac{1}{12} = \frac{11}{12}$

7. 우성이가 어떤 문제를 맞힐 확률은 $\frac{2}{5}$ 이다. 두 문제를 풀었을 때, 적어도 한 문제를 맞출 확률은?

① $\frac{4}{25}$ ② $\frac{8}{25}$ ③ $\frac{14}{25}$ ④ $\frac{16}{25}$ ⑤ $\frac{21}{25}$

해설 (적어도 한 문제를 맞출 확률) = 1 - (두 문제 모두 틀릴 확률) $\therefore 1 - \frac{3}{5} \times \frac{3}{5} = \frac{16}{25}$

8. 다음 그림과 같은 직각삼각형 ABC의 빗변의 중점을 M이라고 할 때, $\overline{
m MC}$ 의 길이는?

⑤ 6

① 2 ② 3 ③ 4 ④ 5

점 M은 직각삼각형 ABC의 외심이므로 $\overline{\text{MA}} = \overline{\text{MB}} = \overline{\text{MC}}$ 이다.

 $\therefore \overline{\mathrm{MC}} = 5$

9. 주사위 두 개를 동시에 던졌을 때, 어느 쪽이든 3의 눈이 나오는 경우의 수를 구하여라.

 ▶ 답:
 <u>가지</u>

 ▷ 정답:
 11 <u>가지</u>

V 88 11 <u>2424</u>

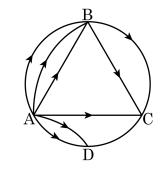
어느 쪽이든 3의 눈이 나오는 경우는 (1, 3), (2, 3), (3, 3), (4, 3),

해설

(5, 3), (6, 3), (3, 1), (3, 2), (3, 4), (3, 5), (3, 6)으로 11 가지이다.

10. 경희가 100 원, 50 원, 10 원짜리 동전을 각각 5 개씩 가지고 있다. 이 동전을 사용하여 경희가 300 원을 지불하는 경우의 수를 구하여라.

 답:
 <u>가지</u>


 ▷ 정답:
 6<u>가지</u>

 $(300,0,0), (200,50\times2,0), (200,50\times1,10\times5), (100,50\times4,0),$

해설

(100, 50 × 3, 10 × 5), (0, 50 × 5, 10 × 5) 의 6가지

11. 다음 그림과 같은 도로망에서 각 도로는 화살표 방향으로 일방통행만 된다고 할 때, A 지점에서 출발하여 C지점까지 갈 수 있는 경우의 수는?

① 6가지 ④ 12가지 ⑤ 15가지

② 8가지

③9가지

해설

A에서 B를 거쳐 C로 가는 경로: $3 \times 2 = 6$ (가지)

A에서 C까지 가는 경로 : 1가지 A에서 D를 거쳐 C로 가는 경로: $2 \times 1 = 2($ 가지) ∴ 6 + 1 + 2 = 9 (7)

- 12. 100 원짜리, 500 원짜리 동전 한 개와 주사위 한 개를 동시에 던질 때, 동전 앞면이 한 개만 나오고 주사위의 눈이 홀수가 나올 경우의 수는?
 - ① 6 가지 ② 8 가지 ③ 10 가지 ④ 12 가지 ⑤ 14 가지

해설

수는 2 가지이고, 이때, 주사위의 눈의 수가 홀수가 나오는 경우 의 수는 1, 3, 5의 3 가지이다. 그러므로 구하는 경우의 수는 $2 \times 3 = 6$ (가지)이다.

두 개의 동전을 동시에 던질 때 앞면이 한 개만 나오는 경우의

- 13. 주머니 안에 빨강, 주황, 노랑, 초록, 파랑, 남색, 보라색의 구슬이 각각 한 개씩 있다. 이 중 두 개의 구슬을 선택하여 일렬로 세우는 경우의 수는?
 - ① 20 ② 21 ③ 42 ④ 48 ⑤ 120

해설

7 개 중에 2 개를 선택하여 일렬로 세우는 경우의 수는 $7 \times 6 = 42$ (가지) 이다.

14. 중국인 4명과 한국인 5명이 한 줄로 설 때, 한국인은 어느 두 명도 이웃하지 않는 경우의 수를 구하여라.
 답: <u>가지</u>

▷ 정답: 2880 가지

한국인 5명을 한 줄로 세우고 그 사이에 중국인 4명을 세운다.

해설

 $5 \times 4 \times 3 \times 2 \times 1 = 120 (가지), 4 \times 3 \times 2 \times 1 = 24 (가지)$ ∴ $120 \times 24 = 2880 (가지)$

- **15.** 0, 1, 2, 3, 4, 5, 6 의 숫자들 중에 2 개를 뽑아 두 자리 정수를 만들 때, 아래에서 설명 하는 '나'에 해당하는 숫자는 무엇인지 구하여라.
 - ・ 나는 20 번째로 작은 수 입니다. · 나는 홀수입니다.

▶ 답: ▷ 정답: 41

1 □ ⇒ 6 가지

해설

 $2 \square \Rightarrow 6$ 가지 3 □ ⇒ 6 가지 이므로 20 번째로 작은 수는 41 이 나온다.

41 은 홀수이다.

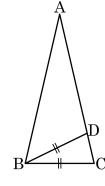
16. 주사위 2 개를 동시에 던져서 나온 눈의 수를 각각 a, b 라 할 때, $\frac{a+b}{a-b}$ 가 짝수일 확률을 구하여라.

▶ 답:

ightharpoonup 정답: $rac{1}{12}$

(i) a - b = 1 일 때, a + b = (홀수)

 $(ii) \ a-b \ = \ 2 \ 일 때, \ \frac{a+b}{a-b} \ 가 짝수인 경우는 <math>(a, \ b) \ =$


(3,1), (5,3)(iii) a-b=3 일 때, a+b=(홀수)

(iv) a-b=4 일 때, $\frac{a+b}{a-b}$ 가 짝수인 경우는 $(a,\ b)=(6,2)$

(v) a - b = 5 일 때, a + b = (홀수)∴ (구하는 확률) $= \frac{3}{6 \times 6} = \frac{1}{12}$

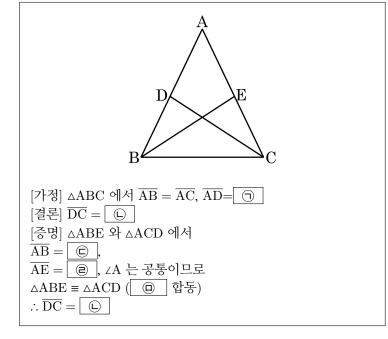
.....

17. $\overline{AB}=\overline{AC}$ 인 이등변삼각형 ABC 에서 $\overline{BC}=\overline{BD}$ 이고 $\angle DBC=26^\circ$ 일 때, $\angle A$ 를 구하면?

① 13°

(2) 26

③ 30°


④ 52°

⑤ 72°

 ΔBCD 에서 $\angle C = \angle BDC$ 이코 $\angle C + \angle BDC + 26^\circ = 180^\circ$

해설

 $\triangle ABC$ 에서 $\angle ABC = \angle C$ 이고 $\angle ABC + \angle C + \angle A = 180^\circ$ 이다. 이때, $\angle C = \angle BDC = \angle ABC$ 이므로 $\angle A = 26^\circ$ 18. 다음은 $\lceil \overline{AB} = \overline{AC}$ 인 이등변삼각형 ABC 에서 변 AB, AC 위의 두 점 D, E 에 대하여 $\overline{AD} = \overline{AE}$ 이면 $\overline{DC} = \overline{EB}$ 이다. \lrcorner 를 증명한 것이다. 다음 \bigcirc ~ \bigcirc 에 짝지은 것으로 옳지 않은 것은?

4 @: AD

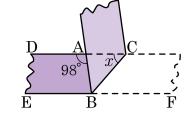
① \bigcirc : \overline{AE}

⑤ □: ASA

③ (E): AC

해설

 \bigcirc \bigcirc : $\overline{\mathrm{EB}}$

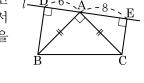

[가정] $\triangle ABC$ 에서 $\overline{AB} = \overline{AC}$, $\overline{AD} = \overline{AE}$

[결론] $\overline{DC} = \overline{EB}$ [증명] △ABE 와 △ACD 에서 $\overline{AB} = \overline{AC}$, $\overline{AE} = \overline{AD}$, ∠A 는 공통이므로

△ABE ≡ △ACD (SAS 합동) ∴ DC = EB

.. DC = EB

19. 다음 그림과 같이 폭이 일정한 종이테이프를 접을 때, $\angle x$ 의 크기는?


① 45° ② 46° ③ 47° ④ 48°

종이 테이프를 접으면 $\angle ABC = \angle FBC$ 이고 $\angle CBF = \angle BCA = \angle x$ (엇각) $\therefore \angle ABC = \angle x$

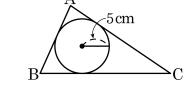
 $\angle \mathrm{DAB} = \angle \mathrm{ABF} = 98\,^{\circ}$

 $\therefore \ \angle x = \frac{98^{\circ}}{2} = 49^{\circ}$

20. 다음 그림과 같이 $\angle A=90^\circ$, $\overline{AB}=\overline{AC}$ 인 직각이등변삼각형 ABC 의 꼭짓점 B, C 에서 점 A 를 지나는 직선 l 위에 내린 수선의 발을 각각 D, E 라 할 때, $\overline{DB}+\overline{EC}$ 의 값은 ?

① 2

② 6


3 8

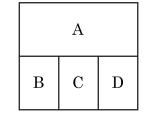
4)14

⑤ 16

△ABD ≡ △CAE (RHA 합동)이므로

 $\overline{BD} = \overline{AE}, \overline{CE} = \overline{DA}$ 이다. 따라서 $\overline{DB} + \overline{EC} = \overline{DE} = 14$ 이다. 21. 다음 그림에서 $\triangle ABC$ 의 내접원의 반지름의 길이는 $5\,\mathrm{cm}$ 이다. $\Delta ABC=120\,\mathrm{cm^2}$ 일 때, ΔABC 의 세 변의 길이의 합을 구하여라.

 $\underline{\mathrm{cm}}$


▷ 정답: 48cm

▶ 답:

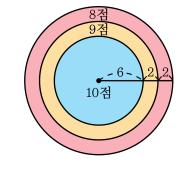
세 변의 길이를 각각 a, b, c 라 두면 $\triangle ABC = \frac{1}{2} \times 5 \times (a+b+c)$ ∴ $a+b+c = 120 \times \frac{2}{5} = 48 \text{ (cm)}$

$$\therefore a + b + c = 120 \times \frac{2}{5} = 48$$

22. 다음 그림의 A, B, C, D에 4가지 색을 서로 같은 색이 이웃하지 않도록 칠하는 경우의 수는? (단, A \rightarrow B \rightarrow C \rightarrow D 순서대로 칠하고, 같은 색을 여러 번 사용해도 됨)

④ 40가지

① 4가지


② 12가지 ③ 48가지 ③ 36가지

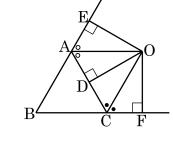
해설

A에 칠할 수 있는 색은 4가지이고, B에 칠할수 있는 색은 3가지, C와 D에 칠할 수 있는 색은 2가지이므로, $4 \times 3 \times 2 \times 2 = 48$ (가

지)

23. 다음 그림과 같은 과녁에 화살을 쏘아 9 점을 맞힐 확률을 구하여라.

답:

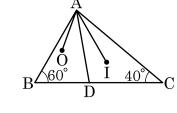

ightharpoonup 정답: $\frac{7}{25}$

과녁에서 9 점의 넓이는 반지름이 8 인 원의 넓이에서 반지름이

6 인 원의 넓이를 뺀 부분이다. 64π - 36π = 28π

따라서 $\frac{28\pi}{100\pi} = \frac{7}{25}$ 이다.

 ${f 24}$. 다음 그림에서 ΔABC 의 $\angle A$, $\angle C$ 의 외각의 이등분선의 교점을 O 라 하고, 점 O 에서 각 변의 연장선 위에 내린 수선의 발을 D, E, F 라 할 때, 다음 중 옳지 <u>않은</u> 것은?



① $\overline{\mathrm{OD}} = \overline{\mathrm{OE}} = \overline{\mathrm{OF}}$

- \bigcirc \triangle ADO \equiv \triangle CDO $\textcircled{4} \ \overline{\mathrm{CD}} = \overline{\mathrm{CF}}$
- \bigcirc $\overline{AD} = \overline{AE}$

그림에서 $\triangle \rm{AEO} \equiv \triangle \rm{ADO}$, $\triangle \rm{CFO} \equiv \triangle \rm{CDO}$ (RHA 합동)이 므로 $\overline{\rm OD}=\overline{\rm OE}=\overline{\rm OF}$, $\overline{\rm CD}=\overline{\rm CF}$, $\overline{\rm AD}=\overline{\rm AE}$

 ${f 25}$. 다음 그림과 같이 ABC 에서 ${f AD}={f DC}$ 가 되도록 점 D 를 잡았을 때, 점O 는 \triangle ABD 의 외심이고 점 I 는 \triangle ADC 의 내심이다. 이때, \angle OAI 의 크기는?

① 18° ② 46°

④ 52° ⑤ 108°

 $\angle DOA = 2 \times 60$ ° = 120 ° 이므로 $\angle OAD = (180$ ° -120 °) \div 2 =

30 ° 이고, $\angle \mathrm{DAC} = 44\,^{\circ}$ 이므로 $\angle \mathrm{DAI} = 40\,^{\circ} \div 2 = 20\,^{\circ}$ 따라서 ∠OAI = ∠OAD + ∠DAI = 50°