
1. 다음과 같이 정삼각형, 마름모, 사다리꼴을 붙여서 만든 과녁이 있다. 이 과녁에 화살을 쏘아 맞혔을 때, 화살이 정삼각형을 맞힐 확률을 구하여라.

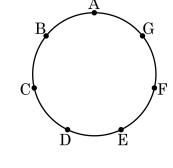
▶ 답:

ightharpoonup 정답: $rac{1}{6}$

2. 다음 두 직각삼각형이 합동이 되는 조건을 모두 고르면?

- $\overline{\text{(1)}}\overline{\text{AB}} = \overline{\text{FD}}$
- \bigcirc \angle ACB = \angle FED $\textcircled{4} \ \overline{BC} = \overline{DE}$
- $\overline{\text{AC}} = \overline{\text{FE}}$

 $\textcircled{1} \ \overline{AB} = \overline{FD} \, (H) \ \textcircled{2} \ \angle ACB = \angle FED \, (R) \ \textcircled{3} \overline{AC} = \overline{FE} \, (S)$ 즉, RHS 합동


- 3. 갑, 을, 병, 정 4명의 후보 중에서 회장 1명, 부회장 1명을 뽑는 경우의 수는?
- ① 4가지 ② 6가지 ③ 9가지

④12가지⑤ 24가지

해설

n 명 중 직책이 다른 두 명을 뽑는 경우의 수는 $n \times (n-1)$ (가지) 이므로 $4 \times 3 = 12(가지)$

다음 그림과 같이 한 원 위에 7개의 점이 있다. 이들 중 두 점을 이어서 4. 생기는 선분의 개수는?

②21개 3 22개 4 30개 5 42개

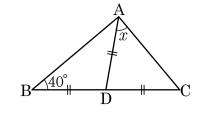
① 15개

해설

A, B, C, D, E, F, G 의 7개의 점 중에서 2개를 뽑아 나열하는 경우의 수는 $7\times 6=42$ 가지이다. 이 때, \overline{AB} 는 \overline{BA} 이므로 구하는 경우의 수는 $\frac{7 \times 6}{2 \times 1} = 21($ 가지)이다.

- 5. 10개의 제비 중에 7개의 당첨제비가 들어있다. 재민이가 한 개를 뽑아 확인하고, 다시 집어넣은 후 원선이가 한 개를 뽑을 때, 두 사람 모두 당첨제비를 뽑을 확률은?
 - ① $\frac{2}{3}$ ② $\frac{17}{50}$ ③ $\frac{10}{17}$ ④ $\frac{49}{100}$ ⑤ $\frac{17}{100}$

재민이가 당첨 제비를 뽑을 확률은 $\frac{7}{10}$ 원선이가 당첨 제비를 뽑을 확률은 $\frac{7}{10}$


원선이가 당첨 제비를 뽑을 확률은 $\frac{7}{10}$ 두 사람 모두 당첨 제비를 뽑을 확률은 $\frac{7}{10} \times \frac{7}{10} = \frac{49}{100}$ 이다.

10 10 100

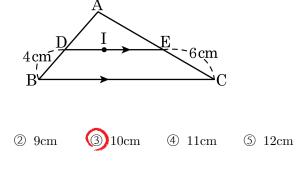
- 6. 어떤 시험에 합격할 확률이 $A ext{ 는 } \frac{2}{5}$, $B ext{ 는 } \frac{1}{2}$, $C ext{ 는 } \frac{2}{5}$ 이라고 한다. 이 시험에서 $A ext{ 는 합격}$, $B ext{ 와 } C ext{ 는 불합격할 확률은?}$
 - ① $\frac{1}{5}$ ② $\frac{1}{25}$ ③ $\frac{3}{25}$ ④ $\frac{6}{25}$ ⑤ $\frac{12}{25}$

해설 $\frac{2}{5} \times \left(1 - \frac{1}{2}\right) \times \left(1 - \frac{2}{5}\right) = \frac{3}{25}$

7. 다음 그림에서 $\overline{AD} = \overline{BD} = \overline{CD}$ 이고 $B = 40^\circ$ 일 때, $\angle x$ 의 크기는?

③ 50°

④ 55°


⑤ 60°

① 40° ② 45°

 $\angle B = \angle BAD = 40^{\circ}$ 이므로 $\angle ADC = 40^{\circ} + 40^{\circ} = 80^{\circ}$

 $\therefore \angle x = \frac{1}{2} (180^{\circ} - 80^{\circ}) = 50^{\circ}$

다음 그림에서 점 I 는 $\triangle ABC$ 의 내심이고, \overline{BC} 와 평행한 직선과 \overline{AB} , \overline{AC} 의 교점을 각각 D , E 라고 한다. $\overline{BD}=4\mathrm{cm}$, $\overline{CE}=6\mathrm{cm}$ 일 때, 8. DE 의 길이는?

점 I 가 내심이고, $\overline{DE}//\overline{BC}$ 일 때, $\overline{DE}=\overline{DI}+\overline{EI}=\overline{DB}+\overline{EC}$ 이므로 $\overline{\mathrm{DE}} = 4 + 6 = 10 (\mathrm{cm})$ 이다.

해설

9. 서로 다른 주사위 A, B 를 던져서 A 에서 나온 눈의 수를 x, B 에서 나온 눈의 수를 y라 할 때, x < y 이 성립하는 경우의 수를 구하여라.

 답:
 <u>가지</u>

 ▷ 정답:
 15 <u>가지</u>

○ ○日・ 19<u>///</u>

(x,y) = (1,2), (1,3), (1,4), (1,5), (1,6),

(2,3), (2,4), (2,5), (2,6), (3,4), (3,5), (3,6), (4,5), (4,6), (5,6) : 15 가지

- 10. 두 개의 주사위를 던질 때, 눈의 합이 6 또는 9인 경우의 수는?
 - ① 7가지
 ④ 10가지
- ② 8가지
- ③9가지
- · 10/|
- ⑤ 11가지

해설 합이 6 인 경우: (1, 5), (2, 4), (3, 3), (4, 2), (5, 1) → 5가지

합이 9인 경우: (3, 6), (4, 5), (5, 4), (6, 3) → 4가지 ∴ 5+4=9(가지)

- 11. 주사위 3 개를 동시에 던질 때, 나올 수 있는 모든 경우의 수는?
 - ④ 180 가지 ⑤ 216 가지
- - ① 18 가지 ② 36 카지 ③ 108 가지

 $6 \times 6 \times 6 = 216$ (가지)

12. 부모님을 포함하여 5 명의 가족이 나란히 앉아서 가족사진을 찍으려고 한다. 부모님이 이웃하여 앉아 사진을 찍게 되는 경우의 수를 구하여 라.

 ▶ 정답: 48
 48
 가지

부모님을 하나로 묶어 한 줄로 세운 다음, 묶음 안에서 자리를

바꾸는 경우의 수를 곱한다. ∴ (4×3×2×1)×2 = 48(가지)

13. 1, 2, 3, 4, 5 의 숫자가 각각 적힌 5 장의 카드에서 3 장을 뽑아 만들 수 있는 세 자리의 정수 중 일의 자리가 4 이상인 것은 모두 몇 가지인지 구하여라.

 ► 답:
 가지

 ▷ 정답:
 24 가지

4, 5 인 경우 두 가지가 있다.
 4 인 경우는 백의 자리에는 4 를 제외한 4 가지, 십의 자리에는 4 와 백의 자리에 사용한 카드 하나를 제외한 3 가지이므로 경우의 수는 4 × 3 = 12 (가지)이다.
마찬가지로 5 의 경우의 수도 4 × 3 = 12 (가지)가 된다.
따라서 구하는 경우의 수는 12 + 12 = 24 (가지)이다.

14. 다음 숫자 카드 4 장 중에서 세 개를 뽑아 세 자리의 정수를 만들 때, 만들 수 있는 정수의 수를 구하여라.

0 0 1 2

 ▶ 답:
 개

 ▷ 정답:
 6개

기존의 방법을 사용하면 $2 \times 3 \times 2 = 12$ (개)와 같이 옳지 않은

해설

답이 나오게 된다. 0 이 두 개라 중복이 되므로 직접 수형도를 그려서 숫자를 세준다. 직접 수를 써보면 100, 102, 120, 200, 201, 210 와 같이 나온다.

15. 청소년 대표 야구팀에는 투수 5 명, 포수 4 명이 있다. 감독이 선발로 나갈 투수와 포수를 한명씩 선발하는 경우의 수를 구하면?

② 10가지 ③ 15가지

- ⑤20가지 ④ 18가지

포수를 선발하는 경우의 수 : 4가지

해설 투수를 선발하는 경우의 수 : 5가지

 $\therefore 5 \times 4 = 20(7])$

① 9가지

16. 자연수 x, y, z 가 홀수일 확률이 각각 $\frac{1}{2}$, $\frac{2}{3}$, $\frac{3}{4}$ 이다. x + y + z 가 짝수일 확률은?

① $\frac{1}{24}$ ② $\frac{1}{12}$ ③ $\frac{3}{12}$ ④ $\frac{1}{4}$

짝수가 나오려면 (세 수 모두 짝수) + (세 수 중 하나가 짝수) 모두 짝수일 확률: $\frac{1}{2} \times \frac{1}{3} \times \frac{1}{4} = \frac{1}{24}$ 하나만 짝수일 확률: $\left(\frac{1}{2} \times \frac{2}{3} \times \frac{3}{4}\right) + \left(\frac{1}{2} \times \frac{1}{3} \times \frac{3}{4}\right) + \left(\frac{1}{2} \times \frac{2}{3} \times \frac{1}{4}\right) = \frac{11}{24}$

따라서 구하는 확률은 $\frac{1}{24} + \frac{11}{24} = \frac{1}{2}$

- 17. 두 개의 동전을 동시에 던질 때, 모두 앞면이 나오거나 모두 뒷면이 나올 확률은?
 - ① $\frac{5}{16}$ ② $\frac{3}{4}$ ③ $\frac{1}{4}$ ④ $\frac{3}{8}$

두 개 모두 앞면이 나올 확률은 $\frac{1}{4}$ 이고, 두 개 모두 뒷면이 나올 확률은 $\frac{1}{4}$ 이다. 그러므로 구하는 확률은 $\frac{1}{4} + \frac{1}{4} = \frac{1}{2}$ 이다.

- **18.** A, B 두 개의 주사위를 던져서 A 주사위의 눈의 수를 x, B 주사위의 눈의 수를 y라고 할 때, 2x - y = -1이 될 확률을 구하여라.

▶ 답:

ightharpoonup 정답: $rac{1}{18}$

모든 경우의 수는 $6 \times 6 = 36$ (가지)

2x - y = -1을 만족하는 (x, y)는 (1, 3), (2, 5)의 두 가지

 $\therefore \ (구하는 확률) = \frac{2}{36} = \frac{1}{18}$

- 19. 어떤 학생이 1번 과녁을 명중시킬 확률은 $\frac{3}{5}$, 2번 과녁을 명중시키지 못할 확률은 $\frac{1}{4}$ 일 때, 이 학생이 두 과녁 중 한 곳만 명중시킬 확률은?
 - ① $\frac{11}{12}$ ② $\frac{5}{12}$ ③ $\frac{9}{20}$ ④ $\frac{3}{4}$ ⑤ $\frac{2}{3}$

1번 과녁을 명중시키지 못할 확률은 $\frac{2}{5}$

2번 과녁을 명중시킬 확률은 $\frac{3}{4}$ 따라서 둘 중 한 과녁만 명중시킬 확률은 $\frac{3}{5} \times \frac{1}{4} + \frac{2}{5} \times \frac{3}{4} = \frac{9}{20}$

$$\boxed{\frac{5\times4+5\times4}{5}\times4} = \frac{1}{2}$$

20. 다음은 삼각형의 모양의 종이를 오려서 최대한 큰 원을 만들려고 할때의 과정이다. 그 순서를 찾아 차례대로 써라.

보기

- □ ΔABC 의 세 변의 수직이등분선의 교점을 찾아 O 라고 한다.
 □ 점 O 를 중심으로 하고 OA 를 반지름으로 하는 원을
- 그린다.

 © 세 내각의 이등분선의 교점을 I 라고 한다.
- ② 점 I 를 중심으로 하고 점 I 에서 한 변까지의 거리를
- 반지름으로 하는 원을 그려 오린다. 세 내각의 이등분선을 찾는다.

▶ 답:

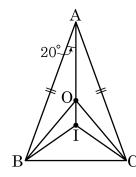
▶ 답:

▶ 답:

▷ 정답: □

 ▷ 정답:
 ©

 ▷ 정답:
 @


해설

◎ 세 내각의 이등분선을 찾는다.ⓒ 세 내각의 이등분선의 교점을 I 라고 한다.

② 점 I 를 중심으로 하고 점 I 에서 한 변까지의 거리를 반지름 으로 하는 원을 그려 오린다.

—<u>—</u> गिर्ट येग मध्या.

21. 다음 그림과 같은 이등변삼각형 ABC 에서 점 I 와 점 O 는 각각 \triangle ABC 의 내심과 외심이다. \angle BAO = 20° 일 때, \angle BIC – \angle BOC 의 크기는?

① 30°

② 40° ③ 50° ④ 60°

⑤ 70°

 $\triangle ABC$ 의 외심이 점 O 일 때, $\frac{1}{2}\angle BOC=\angle A$, $\angle A=40^\circ$ 이므로 $\angle ABC=70^\circ$, $\angle BOC=80^\circ$ 이다.

 $\triangle ABC$ 의 내심이 점 I 일 때, $\frac{1}{2} \angle A + 90^{\circ} = \angle BIC$ 이므로

 $\angle \mathrm{BIC} = \frac{1}{2} \times 40^\circ + 90^\circ = 110^\circ$ 이다.

따라서 ∠BIC – ∠BOC = 110° – 80° = 30° 이다.

22. a = -2, -1, 0, 1이고, b = -1, 2, 3일 때, a의 값을 x좌표, b의 값을 y좌표로 하는 순서쌍은 모두 m개이고, 이 중 제2사분면에 위치한 순서쌍은 n개이다. 이때, m+n의 값을 구하여라.

답:

▷ 정답: 16

해설 a의 값을 *x* 좌표, *b*의 값을 *y* 좌표로 하는 모든 순서쌍은

(-2, -1), (-2, 2), (-2, 3), (-1, -1), (-1, 2), (-1, 3), (0, -1), (0, 2), (0, 3), (1, -1), (1, 2), (1, 3) 의 12 개

∴ m = 12

순서쌍 중 제 2 사분면에 위치한 순서쌍은 (-2, 2), (-2, 3), (-1, 2), (-1, 3) 의 4 개

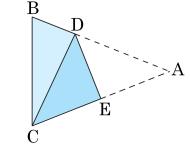
 $\therefore n = 4$ $\therefore m + n = 16$

 ${f 23.}$ 6 개의 의자가 있는 고사실에 6 명의 수험생이 임의로 앉을 때, 3 명만이 자기 수험 번호가 적힌 자리에 앉고 나머지 3 명은 남의 자리에 앉게 되는 경우의 수를 구하여라.

<u>가지</u>

▷ 정답: 40 <u>가지</u>

해설


▶ 답:

6 명 중 3 명이 자기 자리에 앉는 경우의 수는 $\frac{6\times5\times4}{3\times2\times1}=20$ (가지) 이 때, 남은 세 사람이 다른 사람의 자리에 앉는경우의 수는 2

가지이므로

구하는 경우의 수는 $20 \times 2 = 40$ (가지)

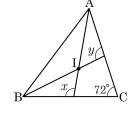
 ${f 24}$. 다음 그림은 ${\it \angle B}={\it \angle C}$ 인 삼각형 ABC 를 점 A 가 점 C 에 오도록 접은 것이다. ∠DCB = 25° 일 때, ∠A 의 크기를 구하여라.

ightharpoonup 정답: $rac{130}{3}$ $\stackrel{\circ}{-}$

▶ 답:

 $\angle A = \angle x$ 라 하면

해설


 $\angle \mathrm{DCE} = \angle \mathrm{A} = \angle x$

 $\angle B = \angle C = \angle x + 25^{\circ}$ ΔABC 에서 세 내각의 크기의 합은 180° 이므로

 $\angle x + 2(\angle x + 25^\circ) = 180^\circ$

 $3\angle x = 130^{\circ}, \ \angle x = \frac{130^{\circ}}{3}$ $\therefore \ \angle A = \frac{130^{\circ}}{3}$

25. \triangle ABC 에서 점 I 는 내심일 때, $\angle x + \angle y$ 의 크 기는?

① 190° ② 191° ③ 192°

④ 194°

 $\triangle ABC$ 에서 $\angle IAB = \angle IAC = a$,

 $\angle ABI = \angle CBI = b$ 라 하자. $2\angle a + 2\angle b + 72^{\circ} = 180^{\circ}$

 $\therefore \angle a + \angle b = 54^{\circ}$

 $\angle x + \angle y = (\angle a + 72^{\circ}) + (\angle b + 72^{\circ}) = \angle a + \angle b + 144^{\circ} = 198^{\circ}$