- 1. 다음 중에서 집합이 될 수 $\underline{\text{없는}}$ 것은?
 - ① 1 보다 작은 자연수의 집합
 - ② 우리 반에서 키가 160cm 이상인 학생들의 모임 ③ 3 보다 큰 소수들의 모임

 - ④ 우리 반에서 몸무게가 작은 학생들의 모임
 - ⑤ 우리나라 전임 대통령들의 모임

④ 몸무게가 '작은' 이란 기준이 명확하지 않다.

다음 중에서 옳지 <u>않은</u> 것은? 2.

- ① $n(\emptyset) + n(\{1\}) = 1$
- ② $n({2,4}) + n({1,2}) = 4$
- ⑤ $n({0,2}) + n({1}) = 3$

③ $n(\{5,6,7\}) = 3$, $n(\{5,7\}) = 2$ 이므로 3-2 = 1 이다.

- **3.** 다음 중 옳지 <u>않은</u> 것은?
 - ② {월,수,금}∩{화,목}=∅

① $\{1,2\} \cap \{2,3\} = \{2\}$

- $\textcircled{3} \{\rightarrow,\uparrow,\nwarrow,\swarrow\} \cap \{\nwarrow,\nearrow,\downarrow\} = \{\nwarrow,\swarrow\}$
- ④ $\{x|x = 6 = 9 = 10, 3, 5\} = \{2, 3\}$
- ⑤ $\{x|x는 홀수\} \cap \{x|x는 14의 약수\} = \{1,7\}$
- $(1, 2, 0, 0) \cap (2, 0, 0) = (2, 0)$ $(3) \{1, 3, 5, \dots\} \cap \{1, 2, 7, 14\} = \{1, 7\}$

- 4. 다음 집합을 조건제시법으로 나타낸 것이다. 옳지 <u>않은</u> 것은?
 - ① $A \cup B = \{x | x \in A \oplus x \in B\}$ ② $A - B = \{x | x \in A \oplus x \notin B\}$

 - ③ $A \cap B = \{x | x \in A 그리고 x \in B\}$ ④ $A^c = \{x | x \in U 또는 x \notin A\}$
 - ③ $B-A = \{x | x \notin A$ 그리고 $x \in B\}$

 $A^c = \{x | x \in U \ 그리고 \ x \notin A\}$

- 5. 집합 $U = \{x \mid 1 \le x \le 30, x \in \mathbb{R} \}$ 의 두 부분집합 $A = \{x \mid x \in 3 \}$ 의 배수 $\}$, $B = \{x \mid x \in 2 \}$ 의 배수 $\}$ 에 대하여 $A B^c$ 의 원소의 개수는?
 - ① 2개 ② 3개 ③5개 ④ 7개 ⑤ 8개

 $A - B^c = A \cap B = \{x \mid x 는 6 의 배수\} = \{6, 12, 18, 24, 30\}$: 5 개

- **6.** 다음 중 명제가 <u>아닌</u> 것은?
 - ① 한라산은 제주도에 있다.
 - ② 독도는 섬이 아니다.③ 19 는 짝수이다.

 - ④ 수학 책은 두껍다.
 - ③ 삼각형의 세 내각의 크기의 합은 180°이다.

참인 명제 : ①, ⑤

거짓인 명제 : ②, ③ ④의 경우 두껍다는 7

④의 경우 두껍다는 기준이 모호하므로 명제가 아니다.

- 7. 명제 'p 이면 q 가 아니다.' 의 역인 명제의 대우를 구하면?
 - ① q가 아니면 p 이다. ② q 이면 p 가 아니다.
 - ③ p 가 아니면 q 가 아니다. ④ p 가 아니면 q 이다.
 - ⑤ q 이면 p 이다.

해설 $p \to \sim q \Rightarrow \sim q \to p \Rightarrow \sim p \to q \Rightarrow p$ 가 아니면 q이다.

8. 다음 중 x > 7 의 필요조건이고, 충분조건은 되지 <u>않는</u> 것은?

① x > 7 ② x < 7 ③ $x \ge 7$ ④ $x \le 7$ ⑤ x = 7

x > 7 범위를 포함하는 것을 고르면 $x \ge 7$

- 다음 중 역함수가 존재하지 <u>않는</u> 것은? 9.
 - ① y = x 2③ $y = x^3$
- $\bigcirc y = x^2$
- ④ $y = x^2 2x$ (단, $x \ge 1$)
- ⑤ y = |x 1| (단, $x \ge 1$)

일대일 대응이 아닌 것은 ②번이다.

그러므로 ②번 그래프는 역함수가 존재하지 않는다.

10. 다음 중 $A \subset B$ 인 관계인 것은?

- $A = \{x \mid x 는 6 의 약수\}, B = \{x \mid x 는 12 의 약수\}$ $A = \{x \mid x = \frac{3}{2}, B = \{3, 5, 7, 9\}$
- $A = \{x \mid x = 5$ 보다 작은 자연수 $\}, B = \{1, 2, 4\}$
- $A = \{x \mid x 는 1 의 배수\}, B = \{x \mid x 는 3 의 배수\}$
- $A = \{1, 3, 5, 7\}, B = \{2, 4, 6, 8\}$

$A \subset B$

 $B \subset A$

- $\textcircled{4} \ B \subset A$
- ⑤ 포함 관계가 없다.

- **11.** 두 집합 $A = \{a+1, 4, 6\}, B = \{b, 5, 6\}$ 에 대하여 A = B 일 때, a+b 의 값은?
 - ① 7
- **②**8
- 3 9
- 4 10
- ⑤ 11

A = B 이므로 a + 1 = 5, a = 4, b = 4

 $\therefore a+b=8$

12. 다음 보기의 대응 중에서 함수인 것을 <u>모</u>두 고른 것은 무엇인가?

⊙ 원의 반지름의 길이와 그 넓이의 대응

- ⓒ 이차방정식과 그 방정식의 실근의 대응
- © 선분과 그 길이의 대응
- ② 함수와 그 함수의 정의역의 대응 @ 실수와 그 실수를 포함하는 집합의 대응

④ □, □

해설

 $\textcircled{1} \ \textcircled{7}, \textcircled{L}, \textcircled{E}$

② ¬,∟,□ ⑤ ②,⊙

③ ¬, □, ⊇

 \bigcirc 모든 원의 반지름의 길이 r는 오직 하나의

넓이 πr^2 에 대응되므로 함수가 될 수 있다. \bigcirc 이차방정식 $ax^2 + bx + c = 0$ 에서 $b^2 - 4ac < 0$ 이면 대응을 갖지 못하고(허근),

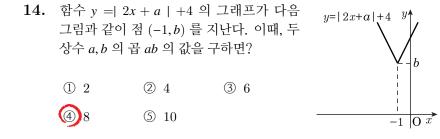
 $b^2 - 4ac > 0$ 이면 두 개의 대응을 가지므로

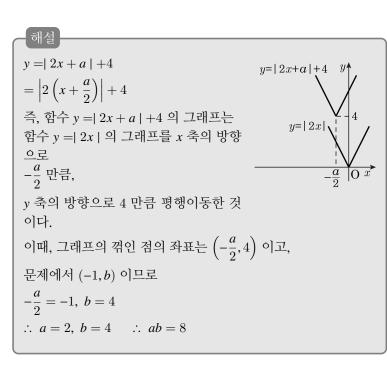
(서로 다른 두 실근) 함수가 될 수 없다. ⓒ 모든 선분은 오직 하나의 길이에 대응되므로

함수가 될 수 있다. ② 모든 함수는 반드시 정의역을 갖고

그 정의역은 유일하므로 함수가 될 수 있다. \bigcirc 특정한 실수 a 를 포함하는 집합은

{a}, {a, b}, {a, b, c}, ··· 등 무수히 많다. 즉, 실수 a에 a를 포함하는 무수히


많은 집합들이 대응되므로 함수가 될 수 없다.


따라서 함수인 것은 ⋽, ┏, ❷이다.

- 13. 이차함수 $f(x) = x^2 x$ 가 있다. 함수 $f: X \to X$ 가 일대일대응이 되도록 하는 집합 $X 는 X = \{x | x \ge k\}$ 이다. 이 때, k 의 값은 얼마인 가?
 - ① 0 ② 1 ③ 2 ④ 3 ⑤ 4

해설

주어진 함수 $f: X \to X$ 가 일대일대응이려 면, (정의역)=(공역) 이므로 (정의역)=(치역) 이 되어야 한다. 즉, f(k)=k $\therefore k=0$ 또는 k=2 (i)k=0이면 f(0)=f(1)이므로 $f(x)=x^2-x$ 가 일대일대응이 되지 않는다. (ii)k=2 이면 일대일대응이 된다. $\therefore k=2$

15. x: y = 2: 3일 때, $\frac{3x^2 + 2xy}{x^2 + xy}$ 의 값을 구하여라.

 $x: y = 2: 3 \Rightarrow x = 2k, y = 3k$ $\frac{3x^2 + 2xy}{x^2 + xy} = \frac{3(2k)^2 + 2(2k)(3k)}{4k^2 + (2k)(3k)}$ $= \frac{24k^2}{10k^2} = \frac{24}{10} = \frac{12}{5}$

- 16. 무리함수 $y = \sqrt{ax}$ 의 그래프에 대한 다음 설명 중 옳지 <u>않은</u> 것은?
 - ① 정의역은 {x | x ≥ 0} 이다.② 치역은 {y | y ≥ 0} 이다.

해설

- ③ $y = -\sqrt{ax}$ 와 x 축에 대하여 대칭이다.
- ④ $y = \sqrt{-ax}$ 와 y 축에 대하여 대칭이다.
- ⑤ *a* > 0 이면 원점과 제 1사분면을 지난다.

a > 0일 때와 a < 0일 때의 $y = \sqrt{ax}$ 의 그래프는 다음 그림과 같다. 그림에서 ②,③,④,⑤는 참임을 알 수있 다. 그러나 a > 0일 때의 정의역은 $\{x \mid x \ge 0\}$ 이므로 ①은 틀린 것이다.

. 다음 부등식 중 성립하지 <u>않는</u> 것은? (단, 모든 문자는 실수)

 $|a| + |b| \ge |a + b|$

②
$$a \ge b > 0$$
일 때 $\frac{b}{2+a} \ge \frac{a}{2+b}$

③
$$a^3 + b^3 + c^3 \ge 3abc(a > 0, b > 0, c > 0)$$

④
$$\sqrt{3} + \sqrt{13} > \sqrt{2} + \sqrt{14}$$

⑤ $a^2 + b^2 + c^2 \ge ab + bc + ca$

- $\textbf{18.} \quad a>0, \ b>0 일 \ \text{때}, \ 부등식 \left(a+\frac{1}{b}\right)\left(b+\frac{4}{a}\right) \geq k \ \text{가 항상 성립하는 } k$ 의 범위를 구하면 ?
 - ① $k \ge 9$ ② $k \le 9$ ③ $k \ge 4$ (4) $k \le 4$ (5) $k \le -4$

$$\left(a + \frac{1}{b}\right)\left(b + \frac{4}{a}\right) = ab + 1 + 4 + \frac{4}{ab} = ab + \frac{4}{ab} + 5$$
그런데, a , b 가 양수이므로 $ab > 0$, $\frac{4}{ab} > 0$

$$\therefore ab + \frac{4}{ab} \ge 2\sqrt{ab \cdot \frac{4}{ab}} = 4$$

$$\therefore ab + \frac{4}{ab} \ge 2\sqrt{ab \cdot \frac{4}{ab}} = 4$$

$$ab = \sqrt{ab}$$

$$\therefore \left(a + \frac{1}{b}\right) \left(b + \frac{4}{a}\right) = ab + \frac{4}{ab} + 5 \ge 4 + 5$$

$$\therefore k \le 9$$

19. 함수 f(x) = ax 가 $(f \circ f)(x) = x$ 를 만족할 때, 상수 a 의 값을 구하 면?

① ±1

- ② ± 2 ③ ± 3 ④ ± 4
- ⑤ ±5

$$(f \circ f)(x) = f(f(x)) = f(ax) = a(ax) = a^2x = x \text{ and } a^2 = 1 \quad \therefore a = \pm 1$$

20. 유리식
$$\frac{a^2 - b^2}{a^2 - 2ab + b^2}$$
을 간단히 하면? (단, $a \neq b$)

해설
$$\frac{a^2 - b^2}{(a-b)^2} = \frac{(a-b)(a+b)}{(a-b)^2} = \frac{a+b}{a-b}$$

21. 무리식 $\sqrt{2-x} + \frac{1}{\sqrt{x+3}}$ 의 값이 실수가 되도록 x의 범위를 정할 때, 정수 x의 개수는?

① 2개 ② 3개 ③ 4개 **④**5개 ⑤ 6개

 $2-x \ge 0, x+3 > 0$ $\therefore -3 < x \le 2$ 이므로 정수의 개수는 5개