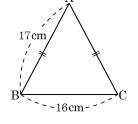
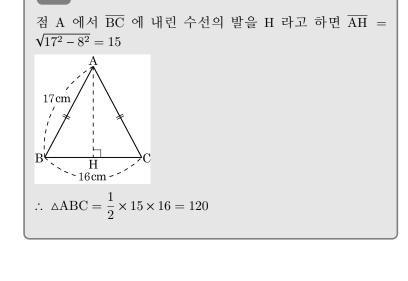
1. 다음 그림과 같은 이등변 삼각형 ABC 의 넓이를 구하여라.



답:

➢ 정답: 120



- **2.** 두 점 P(2, 2), Q(a, -1) 사이의 거리가 $3\sqrt{5}$ 일 때, a 의 값은? (단, 점 Q 는 제3 사분면의 점이다.)
 - ① -8 ② -6 ③ -4 ④ 4 ⑤ 8

 $\sqrt{(2-a)^2+3^2}=3\sqrt{5}$ 에서 a=-4,8 이다. 점 Q 는 제3 사분면 위에 있으므로 $a<0,\ a=-4$ 이다.

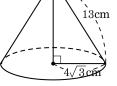
해설

- 3. 한 모서리의 길이가 $12\sqrt{5}$ 인 정사면체가 있다. 이 정사면체의 부피를 구하여라.

 - ① $120\sqrt{10}$ ② $120\sqrt{5}$
- $3720\sqrt{10}$
- $\textcircled{4} 720\sqrt{5}$ $\textcircled{5} 1440\sqrt{10}$

한 변의 길이가 a 인 정사면체의 부피는 $\frac{\sqrt{2}}{12}a^3$ 이므로 $\frac{\sqrt{2}}{12}\times\left(12\sqrt{5}\right)^3=720\sqrt{10}$

- 다음 그림과 같이 반지름의 길이가 $4\sqrt{3}\,\mathrm{cm}$ **4.** 이고 모선의 길이가 13 cm 인 원뿔의 부피는?

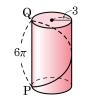


- ① $44\pi \, \text{cm}^3$ $\boxed{3}176\pi\,\mathrm{cm}^3$
- ② $88\pi \, \text{cm}^3$ $4 352\pi \, \text{cm}^3$

⑤ $528\pi \, \text{cm}^3$

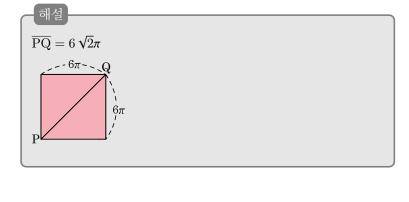
원뿔의 높이 $h=\sqrt{13^2-(4\sqrt{3})^2}=\sqrt{169-48}=\sqrt{121}=11(\,\mathrm{cm})$ 이다. 따라서 $V = \frac{1}{3} \times (4\sqrt{3})^2 \times \pi \times 11 = 176\pi (\text{cm}^3)$ 이다.

5. 다음 그림과 같은 원기둥에서 점 P 에서 옆면을 따라 점 Q 에 이르는 최단 거리를 구하여라.

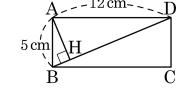


답:

ightharpoonup 정답: $6\sqrt{2}\pi$



다음 그림과 같이 $\overline{AB}=5\mathrm{cm}$, $\overline{AD}=12\mathrm{cm}$ 이 직사각형 ABCD 이 있을 때, \overline{AH} 의 길이를 구하여라. **6.**



▶ 답: <u>cm</u> ightharpoonup 정답: $rac{60}{13} \;
m cm$

 $\overline{BD} = \sqrt{5^2 + 12^2} = \sqrt{169} = 13 \text{(cm)}$ $\triangle ABD$ 의 넓이를 $\frac{1}{2} \times 5 \times 12 = \frac{1}{2} \times 13 \times \overline{AH}$ $\therefore \overline{AH} = \frac{60}{13} \text{cm}$

해설

7. 다음 그림에서 $\overline{BD}=4\sqrt{3}$, $\angle ABC=45^\circ$, $\angle BDC=60^\circ$ 일 때, \overline{AB} 의 길이는?

2BBC = 00° $= \frac{1}{2}$ $= \frac{1}{3}$, AB $= \frac{1}{2}$ $= \frac{1}{3}$.

① $\sqrt{6}$ ② 3 ③ $2\sqrt{3}$

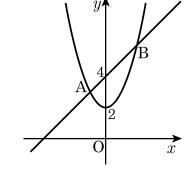
 $4 \sqrt{2}$

 \bigcirc 2 $\sqrt{6}$

해설 ∠CBD = 30°이므로

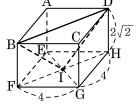
 $\sqrt{3}: 2 = \overline{BC}: 4\sqrt{3}, \overline{BC} = 6$ $\angle ABC = \angle ACB = 45^{\circ}$ 이므로 $1: \sqrt{2} = \overline{AB}: 6$ $\therefore \overline{AB} = 3\sqrt{2}$

8. 다음 그림과 같이 포물선 $y=x^2+2$ 와 직선 y=x+4 의 그래프가 두 점 A, B에서 만날 때, \overline{AB} 의 길이를 구하여라.



답:▷ 정답: 3√2

 $x^2 + 2 = x + 4$ $x^2 - x - 2 = 0$ (x - 2)(x + 1) = 0 $\therefore x = 2, -1$ 이므로 A(-1, 3), B(2, 6) 따라서 $\overline{AB} = \sqrt{\{2 - (-1)\}^2 + (6 - 3)^2} = 3\sqrt{2}$ 이다. 9. 다음 그림과 같은 직육면체에서 밑면의 두 대각선의 교점을 I 라고 할 때, $\triangle BDI$ 의 둘레의 길이가 $a+b\sqrt{2}$ 일 때, a+b 의 값은?(단, a,b는 유리수)



▶ 답:

> 정답: a+b=12

 $\overline{\mathrm{BD}} = \overline{\mathrm{FH}} = 4\,\sqrt{2}$ 이므로

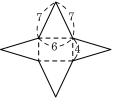
해설

 $\overline{\text{IF}}=2\sqrt{2}$ 따라서 $\overline{\text{BI}}=\sqrt{(2\sqrt{2})^2+(2\sqrt{2})^2}=4$

막다지 $BI = \sqrt{(2 \text{ V2})^2}$ 같은 방법으로 $\overline{ID} = 4$

따라서 $\triangle BDI$ 의 둘레는 $8 + 4\sqrt{2}$ 이다. 따라서 8 + 4 = 12 이다.

10. 다음 전개도로 만들 수 있는 사각뿔의 부피를 구하여라.



▶ 답:

▷ 정답: 48

밑면의 대각선의 길이는

 $\sqrt{4^2+6^2} = \sqrt{52} = 2\sqrt{13}$ 높이를 h, 부피를 V라 하면

$$h = \sqrt{7^2 - (\sqrt{13})^2}$$

$$= \sqrt{49 - 13}$$

$$= 6$$

$$(V) = 6 \times 4 \times 6 \times \frac{1}{3} = 48$$

- 11. 다음 원뿔 모형을 전개도로 만들려고 한다. 전 개도에 쓰일 부채꼴의 중심각의 크기는?



- 다음 그림과 같이 OH의 길이가 4 cm 가 되도록 하여 구를 평면으로 잘랐을 때, 단면인원의 넓이가 48π cm² 이었다. 이때 구의 반지름을 구하여라.
- O 4cm
- ① 6 cm ④ 12 cm
- ②8 cm

 $310\,\mathrm{cm}$

④ 12 cm ⑤ 16 cm

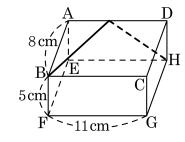
에설 원의 반지름의 길이를 r라 하면 단면인 원의 넓이가 $\pi r^2 =$

 $48\pi \, \mathrm{cm}^2$ 이므로 $r=4\sqrt{3} \, \mathrm{cm}$ 이다. $\angle \mathrm{AHO} = 90\,^\circ$ 이므로 $\triangle \mathrm{AOH}$ 에서 $\overline{\mathrm{OA}}^2 = \overline{\mathrm{AH}}^2 + \overline{\mathrm{OH}}^2$ 이고

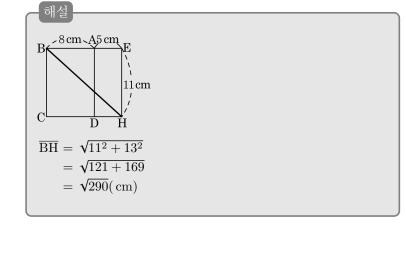
 \overline{OA} 를 R라 하면 $R^2 = (4\sqrt{3})^2 + 4^2$

 $R^2 = 48 + 16 = 64 : R = 8 \text{ cm}$

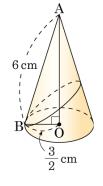
13. 다음 그림의 직육면체에서 점 B 부터 점 H 까지의 최단거리를 구하여라.



- ① $\sqrt{260} \, \text{cm}$ ④ $\sqrt{290} \, \text{cm}$
- ② $\sqrt{270} \, \text{cm}$ ③ $\sqrt{300} \, \text{cm}$
- $3 \sqrt{280} \,\mathrm{cm}$

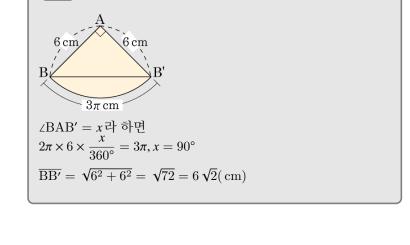


14. 다음 그림과 같이 모선의 길이가 $6 \, \mathrm{cm}$ 이고, 밑면의 한지름의 길이가 $\frac{3}{2} \, \mathrm{cm}$ 인 원뿔이 있다. 밑면의 둘레 위의 한 점 B 에서 옆면을 지나 다시 점 B 로돌아오는 최단 거리를 구하여라.



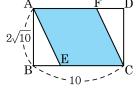
정답: 6√2 cm

▶ 답:



 $\underline{\mathrm{cm}}$

15. 다음 직사각형 ABCD 에서 $\overline{AE} = \overline{CE}$ 가 되도록 점 $E = \overline{CE}$ 가 되도록 점 $\overline{E} = \overline{AF}$ 가 되도록 점 $\overline{E} = \overline{AF}$ 가 되도록 점 $\overline{E} = \overline{AF}$ 가 되도록 여라.



> 정답: 14√10

 $\overline{\text{CE}} = x$ 라 하면 $x^2 = (2\sqrt{10})^2 + (10 - x)^2$ $\therefore x = 7$

해설

 $\therefore \Box AECF = 7 \times 2\sqrt{10} = 14\sqrt{10}$

16. 한 변의 길이가 4 인 정사각형 ABCD 의 각 변에 그림과 같이 네 점 E, F, H, G 를 잡을 때, □EFHG 의 대각선 EH 의 길이를 구하 면? ① $\sqrt{5}$

3 4

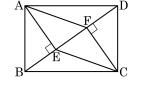
- E 3 . .
- $4 2\sqrt{5}$
- ② $2\sqrt{3}$ ⑤ $3\sqrt{5}$

네 직각삼각형이 서로 합동이므로 $\square \text{EFHG}$ 는 정사각형이다. $\overline{\text{FE}} = \overline{\text{FH}} = \sqrt{1^2 + 3^2} = \sqrt{10}$

 $\therefore x = \sqrt{\left(\sqrt{10}\right)^2 + \left(\sqrt{10}\right)^2} = 2\sqrt{5}$

17. 다음 직사각형 ABCD 의 두 꼭짓점 A, C 에 서 대각선 BD 에 내린 수선의 발을 각각 E,F 이고 $\overline{BE} = \overline{EF} = \overline{FD}$ 이고, $\overline{BD} = 15\,\mathrm{cm}$ 일 때, 사각형 AECF 의 넓이를 구하여라.

 $\underline{\mathrm{cm}^2}$



ightharpoonup 정답: $25\sqrt{2}$ $ext{cm}^2$

해설

▶ 답:

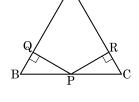
 $\overline{AB}^2 = \overline{BE} \times \overline{BD}$ 이므로 $5 \times 15 = \overline{AB}^2, \ \overline{AB} = 5\sqrt{3}$ 이다. ΔABD 가 직각삼각형이므로

 $\overline{\rm AD} = \sqrt{15^2 - (5\sqrt{3})^2} = 5\sqrt{6} (\,{\rm cm})$ 이다.

 $\overline{AE} = \frac{\overline{AB} \times \overline{AD}}{\overline{BD}} = 5\sqrt{2}(\text{cm})$ 따라서 사각형 AECF의 넓이

 $=5\sqrt{2}\times5=25\sqrt{2}(\mathrm{\,cm^2})$ 이다.

18. 한 변의 길이가 10 인 정삼각형 ABC 에서 \overline{BC} 위에 임의의 점 P 를 잡고, 점 P 에서 $\overline{AB},\,\overline{AC}$ 에 내린 수선의 발을 각각 Q, R 이 라 할 때, $\overline{PQ} + \overline{PR}$ 를 구하면? ① $5\sqrt{3}$ ② $2\sqrt{5}$ ③ $5\sqrt{2}$



4 6

⑤ 8

 $\triangle {
m ABC}$ 의 넓이 $S_1=rac{\sqrt{3}}{4} imes 10^2=25\,\sqrt{3}$

 $\triangle ABP$ 의 넓이 $S_2 = 10 \times \overline{PQ} \times \frac{1}{2} = 5\overline{PQ}$ $\triangle APC$ 의 넓이 $S_3 = 10 \times \overline{PR} \times \frac{1}{2} = 5\overline{PR}$

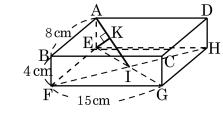
 $S_1 = S_2 + S_3$ 이므로 $25\sqrt{3} = 5\overline{PQ} + 5\overline{PR}$ $\therefore \overline{PQ} + \overline{PR} = 5\sqrt{3}$

- 19. 다음 그림에서 반지름의 길이가 6 cm 인 원 O의 둘레를 6 등분하는 점을 각각 A, B, C, D, E, F라 한다. 이 때, 색칠한 부분의 넓이를 구하면? (색칠한 부분은 ΔAOB + ΔFOE + ΔCOD이다.)
 ① 24√3 cm²
 ② 12√3 cm²
 - F B C D E
 - ① $24\sqrt{3} \text{ cm}^2$ ③ 12 cm^2
- $4 27 \sqrt{3} \, \text{cm}^2$
- ⑤ $18\sqrt{3} \text{ cm}^2$
- (5)21 Vocin

 $\triangle AOB$ 는 길이가 $6\,\mathrm{cm}$ 인 정삼각형이므로 $\Delta AOB = \frac{\sqrt{3}}{4} \times 6^2 = 9\,\sqrt{3}\;(\,\mathrm{cm}^2)$

따라서 색칠한 부분의 넓이는 $9\sqrt{3} \times 3 = 27\sqrt{3} \text{ (cm}^2)$ 이다.

. 다음 그림과 같은 직육면체에서 점 I 는 밑면의 대각선의 교점이고, 점 E 에서 $\overline{\mathrm{AI}}$ 에 내린 수선의 발을 K 라 할 때, $\overline{\mathrm{EK}}$ 의 길이를 구하면?



- $\frac{66\sqrt{353}}{353}$ ④ $\frac{69\sqrt{353}}{353}$
- $\frac{67\sqrt{353}}{353}$ ⑤ $\frac{70\sqrt{353}}{353}$

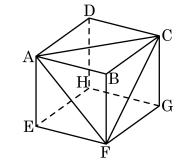
$$\overline{\mathrm{EG}} = \sqrt{8^2 + 15^2} = 17$$
 $\therefore \overline{\mathrm{EI}} = \frac{17}{2}$
 $\overline{\mathrm{AI}} = \sqrt{4^2 + \frac{17^2}{4}} = \frac{\sqrt{353}}{2}$
 $\triangle \mathrm{AEI}$ 의 넓이를 이용하면
$$\frac{1}{2} \times \overline{\mathrm{AE}} \times \overline{\mathrm{EI}} = \frac{1}{2} \times \overline{\mathrm{AI}} \times \overline{\mathrm{EK}}$$

$$17 = \frac{1}{2} \times \frac{\sqrt{353}}{2} \times \overline{\mathrm{EK}} \quad \therefore \overline{\mathrm{EK}} = \frac{68\sqrt{353}}{353}$$

$$\frac{1}{2} \times \overline{AE} \times \overline{EI} = \frac{1}{2} \times \overline{AI} \times \overline{EI}$$

$$17 = \frac{1}{2} \times \frac{\sqrt{353}}{2} \times \overline{EK} \quad \therefore \overline{EK} = \frac{68}{2}$$

 ${f 21}$. 다음 그림과 같이 한 모서리의 길이가 $12{
m cm}$ 인 정육면체를 점 A, C, F 를 지나는 평면으로 잘랐을 때, 점 B에서 밑면인 삼각형 AFC에 내린 수선의 길이를 구하여라.



- ① $2\sqrt{3}$ cm (4) $5\sqrt{3}$ cm (5) $6\sqrt{3}$ cm
- ② $3\sqrt{3}$ cm
- $34\sqrt{3}$ cm

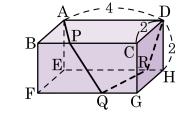
$\overline{AC} = \overline{AF} = \overline{CF} = 12\sqrt{2}(cm)$

 $\triangle ACF = \frac{\sqrt{3}}{4} \times (12\sqrt{2})^2 = 72\sqrt{3}(cm^2)$ 수선의 길이를 h라 하면 사각뿔 B – AFC의 부피에서 $72\sqrt{3} \times h \times \frac{1}{3} = 12 \times 12 \times \frac{1}{2} \times 12 \times \frac{1}{3}$

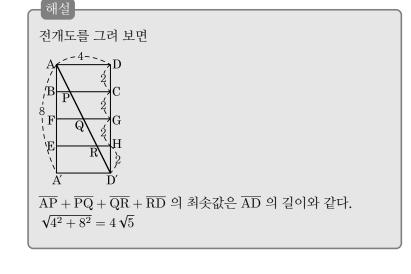
$$h = \frac{12 \times 12 \times 6}{72\sqrt{3}} = 4\sqrt{3}(\text{cm})$$

$$h = \frac{1}{72\sqrt{3}} = 4\sqrt{3}$$

22. 다음 그림과 같은 직육면체에서 \overline{BC} , \overline{FG} , \overline{EH} 위에 각각 점 P,Q,R 를 잡을 때, $\overline{AP}+\overline{PQ}+\overline{QR}+\overline{RD}$ 의 최솟값은?



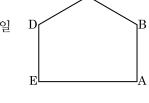
① $5\sqrt{5}$ ② 8 ③ $4\sqrt{5}$ ④ 9 ⑤ $5\sqrt{13}$



23. 다음 그림의 오각형 ABCDE 에서 \angle C = $\angle D = 120^{\circ}, \ \angle E = 90^{\circ},$ $\overline{AB} = \overline{BC} = \overline{CD} = \overline{DE} = 8, \overline{AE} = 8\sqrt{3}$ 일 D_{f} 때, 오각형 ABCDE 의 넓이를 구하여라.

답:

▷ 정답: 80 √3



 $\overline{\mathrm{BC}} = \overline{\mathrm{ED}}$, $\angle{\mathrm{C}} = \angle{\mathrm{D}}$ 이므로 $\Box \mathrm{BCDE}$

는 등변사다리꼴이다. 점 C, D 에서 \overline{BE} 에 내린 수선의 발을 D_f 각각 P, Q 라 하면

 $\overline{\mathrm{BP}} = rac{1}{2}\overline{\mathrm{BC}}$ ੀਹ $\overline{\mathrm{PC}} = rac{\sqrt{3}}{2}\overline{\mathrm{BC}}$ $\triangle BCD$ 에서 \overline{BD} = \overline{AE} = $8\sqrt{3}$, $\angle {\rm CDB} = 30^{\circ}$ 이코, $\overline{\rm AB} = \overline{\rm BC} = \overline{\rm CD} = \overline{\rm DE} = 8$ 이므로

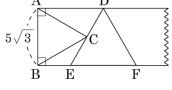
 $\therefore \overline{BP} = \frac{1}{2} \times 8 = 4, \ \overline{PC} = \frac{\sqrt{3}}{2} \times 8 = 4\sqrt{3}$ $\therefore \overline{BE} = \overline{BP} + \overline{PQ} + \overline{QE} = 4 + 8 + 4 = 16$

따라서 오각형 ABCDE 의 넓이는 삼각형 ABE의 넓이와 등변

 $=80\sqrt{3}$

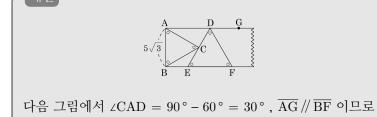
사다리꼴 BCDE의 넓이의 합이다.

24. 다음 그림과 같이 폭이 $5\sqrt{3}$ 으로 일 정한 종이테이프 내부에 두 개의 정 삼각형 ABC, DEF 가 맞닿아 있다. 이 때, $\overline{\mathrm{AD}}$ 의 길이를 구하여라.



▷ 정답: 10

답:

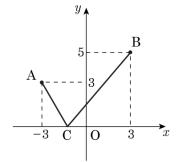


 $\angle ADC = \angle CEF = 60$ ° 이다.

 $\triangle ACD$ 에서 $\overline{AD}:\overline{CD}:\overline{AC}=2:1:\sqrt{3}$ 이므로 $\overline{AD}:5\sqrt{3}=$

 $2: \sqrt{3}, \quad \therefore \overline{AD} = 10$

25. 다음 그림과 같이 세 점 A(-3,3) , B(3,5) , C(a,0) 가 있을 때, $\overline{AC}+\overline{BC}$ 의 최단거리를 구하여라.



 ► 답:

 ▷ 정답:
 10

