1. 다음 표는 A, B, C, D, E 인 5 명의 학생의 수학 쪽지 시험의 결과를 나타낸 것이다. 이 자료의 분산은? 학생 A B C D E

변량(점)	7	9	6	7	6

① 1 ② 1.2 ③ 1.4 ④ 1.6 ⑤ 1.8

주어진 자료의 평균은
$$\frac{7+9+6+7+6}{5} = \frac{35}{5} = 7(점)$$

이므로 각 자료의 편차는 0, 2, -1, 0, -1 이다. 따라서 분산은 $\frac{0^2 + 2^2 + (-1)^2 + 0^2 + (-1)^2}{5} = \frac{6}{5} = 1.2$

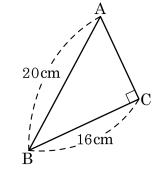
2. 네 수 a, b, c, d의 평균과 분산이 각각 10, 5일 때, $(a-10)^2+(b-10)^2+(c-10)^2+(d-10)^2$ 의 값은?

① 5 ② 10 ③ 15 ④ 20 ⑤ 25

네 수 a, b, c, d 의 평균이 10 이므로 각 변량에 대한 편차는 a - 10, b - 10, c - 10, d - 10 이다. 따라서 분산은

 $\frac{(a-10)^2 + (b-10)^2 + (c-10)^2 + (d-10)^2}{4} = 5$ $\therefore (a-10)^2 + (b-10)^2 + (c-10)^2 + (d-10)^2 = 20$

3. 다음과 같은 직각삼각형 ABC 의 넓이는?



 498cm^2

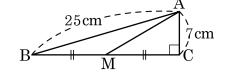
② 94cm^2 ③ 100cm^2

 396cm^2

피타고라스 정리에 따라

 $\overline{AC^2} = \overline{AB^2} - \overline{BC^2}$ $\overline{AC^2} = 400 - 256 = 144$ $\overline{AC} > 0$ 이므로 $\overline{AC} = 12$ 따라서 직각삼각형 ABC 의 넓이는 $\frac{1}{2} \times 16 \times 12 = 96 (\mathrm{cm}^2)$ 이다.

4. 다음 그림에서 $\angle C=90^\circ$, $\overline{BM}=\overline{CM}$, $\overline{AB}=25\mathrm{cm}$, $\overline{AC}=7\mathrm{cm}$ 이다. 이 때, \overline{AM} 의 길이는?



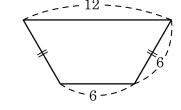
- ① $\sqrt{190}$ cm ④ $\sqrt{194}$ cm
- ② $\sqrt{191}$ cm ③ $\sqrt{199}$ cm
- $\sqrt{193}$ cm
- 0 ,101
- **⊘ V**199cm

 $\triangle ABC$ 에서 $\overline{BC^2} = 25^2 - 7^2 = 576$, $\overline{BC} = 24$ (cm)

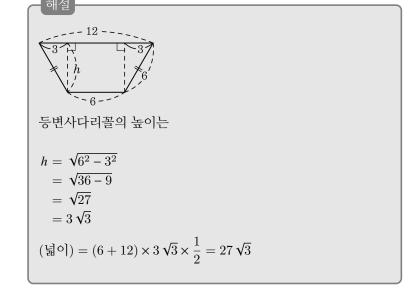
 $\overline{\mathrm{BC}} = \frac{1}{2}\overline{\mathrm{MC}}, \ \overline{\mathrm{MC}} = 12(\mathrm{cm})$

 $\triangle AMC$ 에서 $\overline{AM^2} = 7^2 + 12^2 = 193, \overline{AM} = \sqrt{193} (cm)$

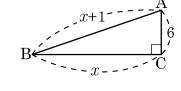
5. 윗변의 길이가 12, 아랫변의 길이가 6, 나머지 두변의 길이가 6 인 등변사다리꼴의 넓이는?



① $21\sqrt{3}$ ② $22\sqrt{3}$ ③ $23\sqrt{3}$ ④ $25\sqrt{3}$ ⑤ $27\sqrt{3}$



6. \triangle ABC 에서 적절한 x 값을 구하면?



① 16 ② 16.5 ③ 17

417.5

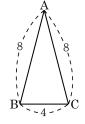
⑤ 18

해설

$$(x+1)^{2} = x^{2} + 6^{2}$$
$$x^{2} + 2x + 1 = x^{2} + 36$$
$$2x = 35$$

 $\therefore x = 17.5$

7. 다음과 같이 두 변의 길이가 8, 밑변의 길이가 4인 이등변삼각형의 넓이는?



① $4\sqrt{13}$ ② $4\sqrt{15}$ ③ $4\sqrt{17}$ ④ $4\sqrt{19}$ ⑤ $4\sqrt{21}$

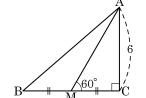
이등변삼각형의 높이는 $\sqrt{8^2-2^2}=\sqrt{64-4}=\sqrt{60}=2\sqrt{15}$

(넓이) = $4 \times 2\sqrt{15} \times \frac{1}{2} = 4\sqrt{15}$

다음 그림의 직각삼각형 m ABC 에서 $m \overline{AB}$ 의 8. 길이는?

① $6\sqrt{2}$ ② $2\sqrt{21}$ ③ $3\sqrt{19}$

(4) $4\sqrt{17}$ (5) $12\sqrt{3}$



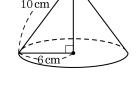
 $1: \sqrt{3} = \overline{CM}: 6$ $\therefore \overline{CM} = 2\sqrt{3}$

 $x = \sqrt{6^2 + (4\sqrt{3})^2} = 2\sqrt{21}$

- 9. 한 모서리의 길이가 6cm 인 정육면체의 대각선의 길이는 몇 cm 인가?
 ① 6√2cm
 ② 6√3cm
 ③ 36cm
 - ④ $36\sqrt{6}$ cm ⑤ 108cm
 - •

한 모서리의 길이가 a 인 정육면체의 대각선의 길이는 $\sqrt{3}a$ 이 므로 구하는 길이는 $6\sqrt{3}$ cm 이다.

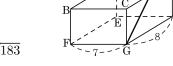
- 10. 모선의 길이가 $10 \, \mathrm{cm}$ 인 밑면의 반지름이 $6 \, \mathrm{cm}$ 인 원뿔의 높이는?
 - ① 6 cm
- ③ 7 cm ④8
- (5) 9 cm



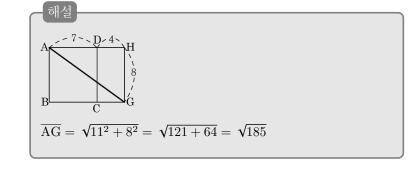
해설

노이 $h = \sqrt{10^2 - 6^2} = 8$ (cm) 이다.

- 11. 다음 직육면체 점 A 에서 출발하여 \overline{CD} 를 지나 점 G 에 도달하는 최단 거리를 구하면?
 - ① $\sqrt{181}$ ② $\sqrt{182}$ ③ $\sqrt{183}$



 $4 \sqrt{184}$ $\sqrt{3} \sqrt{185}$



12. 다음 표는 동건이의 일주일동안 수학공부 시간을 조사하여 나타낸 것이다. 수학공부 시간의 평균은? 요일 일 월 화 수 목 금 토

	시간	2	1	0	3	2	1	5
Ī								

① 1시간 ② 2시간 ③ 3시간 ④ 4시간 ⑤ 5시간

(평균)= $\frac{\{(변량)의총합\}}{\{(변량)의갯수\}}$ 이므로 $\frac{2+1+0+3+2+1+5}{7} = \frac{14}{7} = 2(시간)$ 이다.

- 13. 어느 고등학교 동아리 회원 45 명의 몸무게의 평균이 60kg 이다. 5 명의 회원이 탈퇴한 후 나머지 40 명의 몸무게의 평균이 59.5kg 이되었다. 이때, 동아리를 탈퇴한 5 명의 회원의 몸무게의 평균은?
 - ① 60kg ② 61kg ③ 62kg ④ 63kg ⑤ 64kg

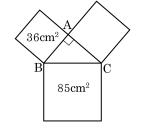
동아리를 탈퇴한 5 명의 학생의 몸무게의 합을 xkg 이라고 하면 $\frac{60\times45-x}{40}=59.5,\ \ 2700-x=2380\ \ \therefore\ x=320(\mathrm{kg})$

40 500, 2.00 표 200 대표 320(대통) 따라서 동아리를 탈퇴한 5 명의 회원의 몸무게의 평균은 $\frac{320}{5}=64(\mathrm{kg})$ 이다.

5

14. 다음은 직각삼각형 ABC 의 각 변을 한 변으로 하는 세 개의 정사각형을 그린 것이다.
 AC 의 길이는?

① 6 cm ② 7 cm ③ 8 cm ④ 9 cm ⑤ 10 cm

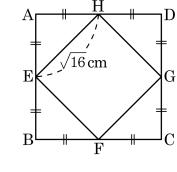


 $\overline{
m AB}$ 를 포함하는 정사각형의 넓이가 $36\,{
m cm}^2$

해설

 $\overline{
m BC}$ 를 포함하는 정사각형의 넓이가 $85~{
m cm}^2$ 이다. $\overline{
m AC}$ 를 포함하는 정사각형의 넓이는 $85-36=49~({
m cm}^2)$ 이므로 $\overline{
m AC}=7~{
m cm}$ 이다.

15. 다음과 같이 정사각형 ABCD 의 각 변의 중점을 연결하여 만든 사각형 EFGH 에서 $\overline{\rm EH}=\sqrt{16}$ 일 때, \Box ABCD 의 넓이를 구하여라.



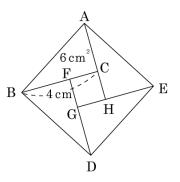
 $\underline{\rm cm^2}$

 ▷ 정답:
 32 cm²

답:

$$\begin{split} \overline{AH} &= \overline{AE} \ , \ (\overline{AE})^2 + (\overline{AH})^2 = 16 \ , \ \overline{AE} = \overline{AH} = \sqrt{8} = 2\sqrt{2} \ . \\ \overline{AD} &= 2\sqrt{2} \times 2 = 4\sqrt{2} \\ \therefore \Box ABCD &= 4\sqrt{2} \times 4\sqrt{2} = 32 (\,\mathrm{cm}^2) \end{split}$$

16. 다음 그림은 직각삼각형 ABC와 합동인 삼각형 4개를 맞추어 정사각형 ABDE를 만든 것이다. ΔABC = 6 cm²이고, BC = 4 cm 일 때, 다음 중 AC의 길이, CH의 길이, □FGHC의 넓이를 차례대로 나타낸 것은?

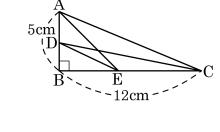


- ① 2 cm, 2 cm, 1 cm² ③ 3 cm, 2 cm, 1 cm²
- 3 cm, 1 cm, 1 cm²
 4 3 cm, 3 cm, 2 cm²
- \bigcirc 4 cm, 3 cm, 2 cm²

해설 $6 \, \mathrm{cm}^2 = \frac{1}{2} \times 4 \, \mathrm{cm} \times \overline{\mathrm{AC}} \, \mathrm{이므로} \, \overline{\mathrm{AC}} = 3 \, \mathrm{cm}$

 $\overline{\text{CH}} = \overline{\text{AH}} - \overline{\text{AC}} = 4 \, \text{cm} - 3 \, \text{cm} = 1 \, \text{cm}$ $\Box \text{FGHC}$ 의 넓이는 $1 \, \text{cm} \times 1 \, \text{cm} = 1 (\, \text{cm}^2)$

17. 다음 그림과 같이 $\angle B=90^\circ$ 인 직각삼각형 ABC 에서 $\overline{AE}=7\mathrm{cm}$ 일 때, $\overline{CD}^2-\overline{DE}^2$ 의 값은?(단, 단위는 생략)



③ 150

4 150

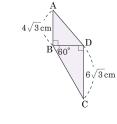
⑤ 210

2120

① 100

 $\overline{AC} = \sqrt{5^2 + 12^2} = 13$ 이므로 $\overline{CD}^2 - \overline{DE}^2 = 13^2 - 7^2 = 120$

18. 다음 그림의 $\square ABCD$ 에서 $\angle ABD = \angle BDC = 90^\circ$, $\angle DBC = 60^\circ$ 일 때, 두 대각선 \overline{BD} , \overline{AC} 의 길이를 각각 구하여라.



 □
 □

 □
 □

 □
 □

 □
 □

<u>cm</u>

해설

ightharpoonup 정답: $\overline{\mathrm{BD}}=6\mathrm{\underline{cm}}$

ightharpoonup 정답: $\overline{AC} = 4\sqrt{21}\underline{cm}$

 $\triangle BCD \triangleleft |A| \overline{BD} : \overline{CD} = 1 : \sqrt{3}$ $\therefore \overline{BD} = 6(\text{ cm})$ $\overline{EC} = 4\sqrt{3} + 6\sqrt{3} = 10\sqrt{3}(\text{ cm})$ $\therefore \overline{AC} = \sqrt{\overline{AE}^2 + \overline{EC}^2}$ $= \sqrt{6^2 + (10\sqrt{3})^2}$ $= \sqrt{336} = 4\sqrt{21}(\text{ cm})$

19. 다음은 민영이의 10회의 영어 듣기 시험에서 얻은 점수를 나타낸 표이다. 이때, 중앙값과 최빈값을 차례대로 구하여라.

횟수										
점수(점)	78	62	60	54	64	78	61	82	84	80

▶ 답: ▶ 답:

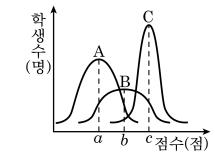
▷ 정답 : 중앙값 : 71

▷ 정답 : 최빈값 : 78

민영이의 수학 점수를 순서대로 나열하면

54, 60, 61, 62, 64, 78, 78, 80, 82, 84 이므로 중앙값은 $\frac{64+78}{2}=71$, 최빈값은 78이다.

 ${f 20}$. 다음 그림은 ${f A}, {f B}, {f C}$ 세 학급의 수학 성적을 나타낸 그래프이다. 다음 설명 중 옳지 <u>않은</u> 것은?



- ① B반 성적은 A반 성적보다 평균적으로 높다.
- ② 그래프에서 가장 많이 분포되어 있는 곳이 평균이다. ③ C반 성적이 가장 고르다.
- ④ 평균 주위에 가장 밀집된 반은 A 반이다. ⑤ B반보다 A반의 성적이 고르다.

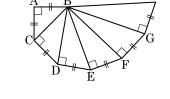
평균 주위에 가장 밀집된 반은 C반이므로 C반 성적이 가장

해설

고르다.

21. 다음 그림에서 $\triangle BGH$ 의 넓이가 $3\sqrt{6}cm^2$ 일 때, △ABC 의 둘레의 길이는?

- ① $2(\sqrt{3} + \sqrt{2}) \text{ cm}$
- ② $\sqrt{2}(2 + \sqrt{2})$ cm
- $3 2\sqrt{3}(\sqrt{2}+1) \text{ cm}$
- $4 \ 2(\sqrt{3}+1) \text{ cm}$ ⑤ $\sqrt{3}(1+\sqrt{3})$ cm



$\overline{\mathrm{GH}}=a$ 라고 하면

해설

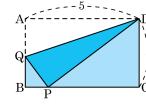
 $\overline{\mathrm{BG}} = \sqrt{a^2 + a^2 + a^2 + a^2 + a^2 + a^2} = a\sqrt{6}$ 일 때,

△BGH의 넓이를 구하면

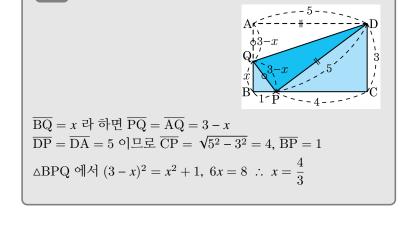
 $\frac{1}{2} \times a\sqrt{6} \times a = 3\sqrt{6}, a^2 = 6, a = \sqrt{6}$ 이다. $\overline{\mathrm{BC}} = \sqrt{(\sqrt{6})^2 + (\sqrt{6})^2} = 2\sqrt{3} (\,\mathrm{cm})$ 이다.

따라서 \triangle ABC의 둘레는 $\sqrt{6}+\sqrt{6}+2\sqrt{3}=2\sqrt{6}+2\sqrt{3}(\,\mathrm{cm})$ 이다.

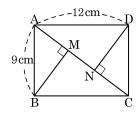
22. 직사각형 ABCD 를 다음 그림과 같이 꼭 짓점 A 가 변 BC 위의 점 P 에 오도록 접었을 때, \overline{BQ} 의 길이를 구하면?



- ① $\frac{3}{4}$ ② $\frac{3}{2}$ ③ $\frac{7}{5}$ ④ $\frac{4}{3}$ ⑤ $\frac{5}{4}$



23. 다음 그림과 같이 직사각형 ABCD 의 점 B, D 에서 대각선 AC 에 내린 수선의 발을 각각 M, N 이라고 할 때, $\overline{\text{MN}}$ 의 길이를 구하여라.



▶ 답: ▷ 정답: 4.2

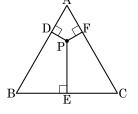
 $\overline{AC} = \sqrt{12^2 + 9^2} = 15$, $\overline{AM} = \overline{NC}$

 $\overline{AB}^2 = \overline{AM} \times \overline{AC}$ 이므로

 $9^2 = \overline{\mathrm{AM}} \times 15$ $\therefore \overline{AM} = 5.4$

 $\therefore \overline{MN} = \overline{AC} - 2\overline{AM} = 15 - 2 \times 5.4 = 4.2$

24. 한 변의 길이가 2인 정삼각형 ABC 의 내부의 한 점 P에서 세 변에 내린 수선의 발을 각각 D, E, F 라 할 때, PD + PE + PF 의 길이를 구하여라.



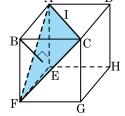
답:> 정답: √3

 $\triangle ABC = \triangle ABP + \triangle BCP + \triangle APC$

$$\begin{split} &\frac{\sqrt{3}}{4} \times 2^2 = \frac{1}{2} \times 2 \times \overline{PD} + \frac{1}{2} \times 2 \times \overline{PE} + \frac{1}{2} \times 2 \times \overline{PF} = \frac{1}{2} \times 2(\overline{PD} + \overline{PE} + \overline{PF}) \\ &\therefore \ \overline{PD} + \overline{PE} + \overline{PF} = \sqrt{3} \end{split}$$

.. 15+

25. 한 모서리의 길이가 $4 \, \mathrm{cm}$ 인 정육면체 ABCD-EFGH 에 대하여 점 B 에서 \triangle AFC 에 내린 수선의 길이를 h 라 할 때, h는 $a\sqrt{b}$ cm 이다. $a \times b$ 의 값을 구하여라.(단, b는 최소의 자연



▶ 답: ightharpoonup 정답: $a \times b = 4$

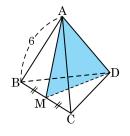
삼각뿔 F-ABC 의 부피는
$$\frac{1}{3}$$
× \triangle ABC× $\overline{\mathrm{BF}}=\frac{1}{3}$ × $\left(\frac{1}{2}\times4\times4\right)$ × $4=\frac{32}{3}$ (cm³) \triangle AFC 는 한 변의 길이가 $4\sqrt{2}$ cm 인 정삼각형이므로 \triangle AFC =

$$\frac{\sqrt{3}}{4} \times (4\sqrt{2})^2 = 8\sqrt{3} \text{ (cm}^2)$$

$$\frac{32}{3} = \frac{1}{3} \times 8\sqrt{3} \times h : h = \frac{4\sqrt{3}}{3} \text{ cm 이다.}$$

따라서
$$a \times b = \frac{4}{3} \times 3 = 4$$
 이다.

26. 다음 그림과 같이 한 모서리의 길이가 6 인 정 사면체 A - BCD 에서 점 M 이 \overline{BC} 의 중점일 때, $\triangle AMD$ 의 넓이는?



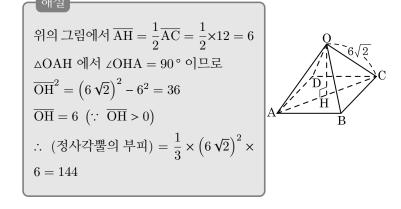
 \bigcirc 9 $\sqrt{2}$

① 9 ② 10 ③ $9\sqrt{6}$ ④ $9\sqrt{3}$

 $\triangle AMD$ 는 $\overline{AM} = \overline{DM} = \sqrt{6^2 - 3^2} =$ $3\sqrt{3}$ 인 이등변삼각형이고 $\triangle AMD$ 의 높이는 $\sqrt{(3\sqrt{3})^2 - 3^2} =$ $\sqrt{18} = 3\sqrt{2}$ 이다. $\triangle AMD = \frac{1}{2} \times 6 \times 3\sqrt{2} = 9\sqrt{2}$

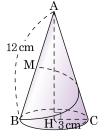
- **27.** 모든 모서리의 길이가 $6\sqrt{2}$ 인 정사각뿔 O ABCD 의 부피를 구하여라.
 - ▶ 답:

▷ 정답: 144



면의 반지름의 길이가 $3 \, \mathrm{cm}$ 인 원뿔이 있다. 모선 AB 의 중점을 M 이라 하고, 점 B 로부터 원뿔의 옆면을 따라 한 바퀴 돌아 점 M 으로 갈 때, 최단 거리를 구하여라.

28. 다음 그림과 같이 모선의 길이가 $12 \, \mathrm{cm}$ 이고, 밑



정답: 6√5 cm

▶ 답:

전개도를 그려, 부채꼴의 중심각을 x 라 하면, $2\pi \times 12 \times \frac{x}{360^{\circ}} = 2\pi \times 3$ $\therefore x = \frac{4.6 \text{ cm. M}}{12 \text{ cm}}$ $\Rightarrow x = \frac{90^{\circ}}{12 \text{ cm}}$ $\Rightarrow x = \frac{12 \text{ cm}}{12 \text{ c$

 $\underline{\mathrm{cm}}$

29. 세 수 a, b, c 의 평균이 4 이고 분산이 5 일 때, 변량 a^2, b^2, c^2 의 평균을 구하여라.

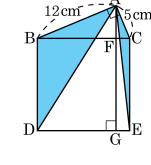
▶ 답:

▷ 정답: 21

해설

제수 a, b, c 의 평균이 4 이므로 $\frac{a+b+c}{3} = 4$ $\therefore a+b+c=12 \cdots \cdots \bigcirc$ 또한, a, b, c 의 분산이 5 이므로 $\frac{(a-4)^2+(b-4)^2+(c-4)^2}{3} = 5$ $(a-4)^2+(b-4)^2+(c-4)^2=15$ $a^2-8a+16+b^2-8b+16+c^2-8c+16=15$ $a^2+b^2+c^2-8(a+b+c)+48=15$ 위의 식에 ①을 대입하면 $a^2+b^2+c^2-8\times12+48=15$ $\therefore a^2+b^2+c^2=63$ 따라서 a^2 , b^2 , c^2 의 평균은 $\frac{a^2+b^2+c^2}{3} = \frac{63}{3} = 21$ 이다.

 ${f 30}$. 다음 그림과 같이 $\angle A=90^\circ$, $\overline{AB}=12{
m cm}$, $\overline{AC}=5{
m cm}$ 인 $\triangle ABC$ 가 있다. $\overline{\mathrm{BC}}$ 를 한 변으로 하는 정사각형 BDEC 를 그렸을 때, 색칠한 부분의 넓이를 구하여라.



▶ 답:

 $\underline{\mathrm{cm}^2}$

ightharpoonup 정답: $rac{169}{2}$ $m cm^2$

 $\triangle ABC$ 에서 $\overline{BC} = \sqrt{12^2 + 5^2} = 13 (cm)$

해설

(ΔABD의 넓이)= (ΔBDF의 넓이) (△AEC의 넓이)= (△FEC의 넓이)

(색칠한 부분의 넓이)= $\triangle BDF + \triangle FEC = \frac{1}{2}(\square BDEC) =$

 $\frac{169}{2}(\mathrm{cm}^2)$