1. 다음은 다섯 명의 학생이 5 일 동안 받은 e - mail 의 개수를 나타낸 표이다. 이때, 표준편차가 가장 작은 사람은 누구인가?

	월요일	화요일	수요일	목요일	금요일
성재	5	2	5	5	2
선영	6	4	6	6	4
민지	10	10	10	11	10
성수	5	8	5	8	9
경희	7	1	7	1	9

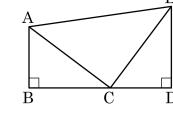
① 성재 ② 선영 ③ 민지 ④ 성수 ⑤ 경희

표준편차는 자료가 흩어진 정도를 나타내고, 표준편차가 작을

해설

수록 변량이 평균에서 더 가까워지므로 표준편차가 가장 작은 학생은 민지이다.

다음 그림에서 두 직각삼각형 ABC 와 CDE 는 합동이고, 세 점 **2**. B, C, D 는 일직선 위에 있다.∠ACE 의 크기를 구하여라.



▷ 정답: 90°

▶ 답:

 $\triangle ABC \equiv \triangle CDE$ 이므로 $\angle BAC = \angle ECD, \angle ACB = \angle CED$,

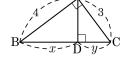
해설

 $\overline{AC} = \overline{CE}$ 이다. 또, ∠BAC + ∠ACB = 90° 이므로,

 $\angle ECD + \angle ACB = 90^{\circ}$ 이다. 따라서 ∠ECD + ∠ACE + ∠ACB = 180° 이므로 ∠ACE = 90°

이다.

3. 다음 그림은 $\angle A = 90^{\circ}$ 인 직각삼각형 ABC 에서 점 A 에서 \overline{BC} 에 수선을 그은 것이다. $\frac{x}{y}$ 의 값을 구하여라.



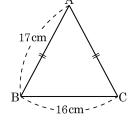
▶ 답:

ightharpoonup 정답: $\frac{16}{9}$

피타고라스 정리를 적용하면 $x+y=\sqrt{16+9}=5$

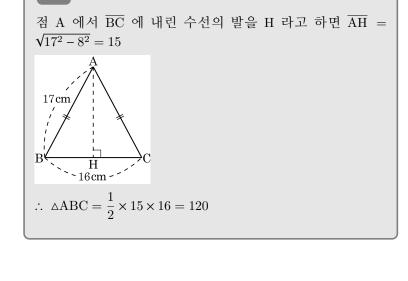
따라서 5x = 16, 5y = 9 이므로 $\frac{x}{y} = \frac{5x}{5y} = \frac{16}{9}$ 이다.

4. 다음 그림과 같은 이등변 삼각형 ABC 의 넓이를 구하여라.



답:

➢ 정답: 120



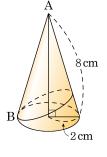
5. 대각선의 길이가 $2\sqrt{3}$ 인 정육면체의 부피를 구하여라.

답:

▷ 정답: 8

해설 한 모서리의 길이를 a라고 하면

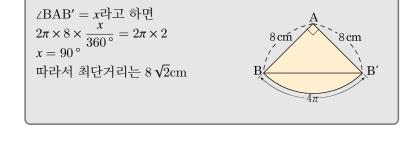
 $\sqrt{3}a = 2\sqrt{3}, a = 2$ 따라서 정육면체의 부피는 $2^3 = 8$ 6. 밑면의 반지름의 길이가 2cm이고, 모선의 길이가 8cm인 원뿔이 있다. 밑변인 원의 둘레 위의한 점 B에서 옆면을 지나 다시 점 B로 돌아오는 최단거리를 구하여라.



 ▷ 정답:
 8√2 cm

0 V2<u>C1</u>

▶ 답:



 $\underline{\mathrm{cm}}$

7. 수진이의 4 회에 걸친 영어 단어 쪽지 시험의 성적의 평균이 8.5 점이었다. 5 회 째의 시험 성적이 떨어져 5 회까지의 평균이 4 회까지의 평균보다 1 점 내렸다면 5 회 째의 성적을 구하여라.

 ■ 답:
 점

 □ 정답:
 3.5 점

4 회까지의 평균이 8.5 점이므로 4 회 시험까지의 총점은

 $8.5 \times 4 = 34(점)$ 5 회까지의 평균은 8.5 점에서 1 점이 내린 7.5 점이므로 5 회째의 성적을 x 점이라고 하면 $\frac{34+x}{5} = 7.5, \ 34+x = 37.5 \ \therefore x = 3.5(점)$

8. 5개의 변량 4,6,10, x,9의 평균이 7일 때, 분산은?

해설

① 4.1 ② 4.3 ③ 4.5 ④ 4.7 ⑤ 4.8

주어진 변량의 평균이 7이므로 $\frac{4+6+10+x+9}{5} = 7$ 29+x=35∴ x=6변량의 편차는 -3,-1,3,-1,2이므로 분산은 $\frac{(-3)^2+(-1)^2+3^2+(-1)^2+2^2}{5} = \frac{9+1+9+1+4}{5} = \frac{24}{5} = 4.8$

다음 표는 정수가 올해 시험을 쳐서 받은 수학점수이다. 평균이 80 점, 분산이 146/7 일 때, 4 월과 7 월 시험성적을 구하여라. (단, 4 월 보다 7 월 시험 성적이 더 우수하다.)

월 3 4 5 6 7

점수(점) 72 a 80 84 b 81 86

<u>점</u>

 답:
 점

 절
 ○ 정답: 4월 시험 성적: 75점

▶ 답:

=11 23

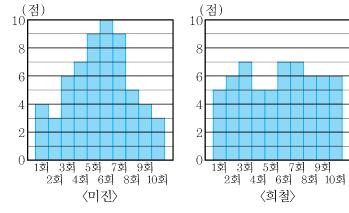
▶ 정답: 7월 시험 성적: 82점

 $\frac{72+a+80+84+b+81+86}{7}=80,$ a+b=157 이다.

 $\frac{64 + (a - 80)^2 + 0 + 16 + (b - 80)^2 + 1 + 36}{7} = \frac{146}{7},$ $(a - 80)^2 + (b - 80)^2 = 29$ 이다. 두 실을 역립해서 품명 a - 75, b - 82이다.

두 식을 연립해서 풀면, a = 75, b = 82 이다.

10. 다음은 미진이와 희철이가 10 회에 걸친 수학 시험에서 얻은 점수를 히스토그램으로 나타낸 것이다. 어느 학생의 성적이 더 고르다고 할 수 있는가?



▷ 정답 : 희철

▶ 답:

희철의 성적이 평균을 중심으로 변량의 분포가 더 고르다.

해설

 ${f 11.}~~10$ 개의 변량 x_1,x_2,\cdots,x_{10} 의 평균이 6 이고 분산이 5 일 때, 다음 10개의 변량의 평균과 분산을 구하여라.

 $-3x_1+1, -3x_2+1, \dots -3x_{10}+1$

▶ 답:

▶ 답:

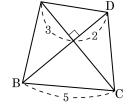
▷ 정답: 평균: -17 ➢ 정답 : 분산 : 45

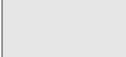
(평균)= $-3 \cdot 6 + 1 = -17$,

(분산)= $(-3)^2 \cdot 5 = 45$

12. 다음 그림과 같이 $\square ABCD$ 의 두 대각선이 직 교할 때, $\overline{AB}^2 + \overline{CD}^2$ 의 값은?

- ① 34 ④ 37
- ② 35 **38**
- 3 36





대각선이 수직인 사각형에서는 다음 관계가 성립한다. $\overline{AB}^2+\overline{CD}^2=\overline{BC}^2+\overline{DA}^2$ $\overline{AD}=\sqrt{3^2+2^2}=\sqrt{13}$ $\therefore \overline{AB}^2+\overline{CD}^2=(\sqrt{13})^2+5^2=38$

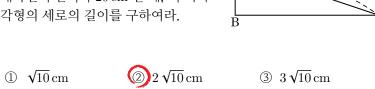
- 13. 다음 직사각형 ABCD 에서 $\overline{AE} = \overline{CE}$ 가 되 도록 점 E 를 잡고, $\overline{AE} = \overline{AF}$ 가 되도록 점 F 를 잡을 때, □AECF 의 둘레의 길이는? \bigcirc 22 cm $320\,\mathrm{cm}$
- 4 cm
- \bigcirc 21 cm $4 19 \, \mathrm{cm}$

 $\overline{\mathrm{AE}} = \overline{\mathrm{CE}} = x \, \mathrm{cm}$ 라 하면

해설

 $\overline{\mathrm{BE}} = (8-x)\,\mathrm{cm}$ 이므로 $x^2 = 4^2 + (8 - x)^2$: x = 5: $(\Box AECF$ 의 둘레) = $5 \times 4 = 20$ (cm)

14. 다음 그림의 직사각형 ABCD 에서 가로의 길이가 세로의 길이의 3 배이고대각선의 길이가 20 cm일 때, 이 직사각형의 세로의 길이를 구하여라.



④ $4\sqrt{10} \, \text{cm}$ ⑤ $5\sqrt{10} \, \text{cm}$

해설 가로 3x cm, 세로 x cm 라고 하면 $(3x)^2 + x^2 = 20^2$ $10x^2 = 400$ $x^2 = 40$ x > 0 이므로 $x = \sqrt{40} = 2\sqrt{10} (\text{ cm})$ 이다.

- 15. 다음 그림과 같이 한 변의 길이가 $\frac{4\sqrt{3}}{3}$ 인 두 정삼각형 ABC, DEF 를 $\overline{\mathrm{BE}} = \overline{\mathrm{EC}} = \overline{\mathrm{CF}}$ 가 되도록 포개어 놓았을 때, 색칠한 부분의 넓이를 구하여라.

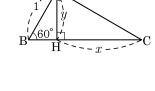
ightharpoonup 정답: $2\sqrt{3}$

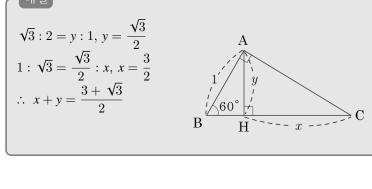
△GEC 는 정삼각형이므로

색칠한 부분의 넓이는 $2\triangle ABC - 2\triangle GEC = 2 \times \frac{\sqrt{3}}{4} \times \left(\frac{4\sqrt{3}}{3}\right)^2 - 2 \times \frac{\sqrt{3}}{4} \times \left(\frac{2\sqrt{3}}{3}\right)^2 = \frac{8\sqrt{3}}{3} - \frac{2\sqrt{3}}{3} = \frac{6\sqrt{3}}{3} = 2\sqrt{3}$ 이다.

- 16. 다음 그림의 직각삼각형 ABC 에서 $\angle B =$ °, $\overline{AB} = 1$ 일 때, x + y 의 값은?

 - $\frac{3-\sqrt{3}}{2}$ ② $3-\sqrt{3}$ ③ $\frac{3+\sqrt{3}}{4}$ ② $\frac{3+\sqrt{3}}{2}$
 - $3 + \sqrt{3}$





17. 다음 그림에서 $\angle ACB = 45$ °, $\angle CAD =$ $30\,^{\circ}$ 일 때, $\overline{\mathrm{AB}}$ 의 길이를 구하여라.

----8cm

▶ 답: $\underline{\mathrm{cm}}$ ▷ 정답: 2√6 cm

 $\overline{\mathrm{AD}}:\overline{\mathrm{AC}}=2:\sqrt{3}$ 이므로

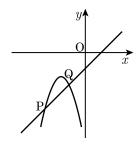
 $2:\sqrt{3}=8:\overline{\mathrm{AC}}$, $2\overline{\mathrm{AC}}=8\sqrt{3}$ $\overline{AC} = 4\sqrt{3}$

 $\overline{AB} : \overline{AC} = 1 : \sqrt{2}$ 이므로

 $x: 4\sqrt{3} = 1: \sqrt{2}, \ \sqrt{2}x = 4\sqrt{3}$

 $\therefore x = \frac{4\sqrt{3}}{\sqrt{2}} = \frac{4\sqrt{6}}{2} = 2\sqrt{6} \text{ (cm)}$

18. 다음과 같이 $y = -x^2 - 6x - 12$, y = x - 2 의 그래프가 두 점 P, Q 에서 만날 때, \overline{PQ} 의 길이는?



① 2 ② 3 ③ $2\sqrt{3}$

 $4 \sqrt{2}$

⑤ $4\sqrt{3}$

해설

$$y = -x^{2} - 6x - 12, y = x - 2$$

$$-x^{2} - 6x - 12 = x - 2$$

$$x^{2} + 7x + 10 = 0$$

$$(x + 5)(x + 2) = 0$$
∴ $x = -5$ 또는 $x = -2$

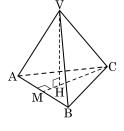
$$PQ = \sqrt{(-5+2)^2 + (-7+4)^2}$$
$$= \sqrt{3^2 + 3^2}$$

$$\overline{PQ} = \sqrt{(-5+2)^2 + (-7+4)^2}$$

$$= \sqrt{3^2 + 3^2}$$

$$= 3\sqrt{2}$$
이다.

$$=3\sqrt{2}$$
이다.



① 2 4 ③ $2\sqrt{6}$ ④ $3\sqrt{6}$ ⑤ $4\sqrt{6}$

모서리의 길이가 a 인 정사면체에서 높이 : $h = \frac{\sqrt{6}}{3}a$, 부피 : $V = \frac{\sqrt{2}}{12}a^3$

$$\frac{1}{3} (1 + n) = \frac{1}{3} (1 + n) = \frac{1}{12} (1 + n)$$

$$V = \frac{\sqrt{2}}{3} (1 + n) = \frac{1}{3} (1 + n) = \frac{1}{12} (1 + n)$$

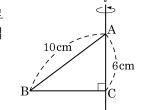
$$V = \frac{\sqrt{2}}{12}a^3 = \sqrt{3}, \ a^3 = 6\sqrt{6} \ \therefore \ a = \sqrt{6}$$

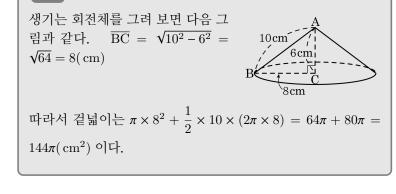
따라서 높이는 $\frac{\sqrt{6}}{3} \times \sqrt{6} = 2$ 이다.

 20. 다음 그림과 같이 AB = 10 cm, AC = 6 cm 인 직각삼각형 ABC 를 직선/을 회전축으로 하여 1 회전시켰을 때 생기는 회전체의 겉넓 이를 구하면?

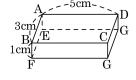
① $124\pi \,\mathrm{cm}^2$ ② $124\sqrt{2}\pi \,\mathrm{cm}^2$

- ③ $134\pi \,\mathrm{cm}^2$ ④ $134\sqrt{2}\pi \,\mathrm{cm}^2$





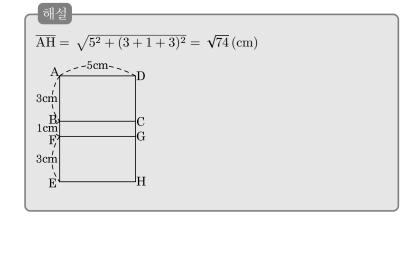
21. 다음 그림과 같은 직육면체의 꼭짓점 A 에서 모서리 BC, FG를 지나 꼭짓점 H까지 가는 최단거리는 ?



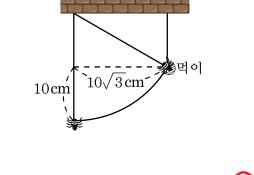
① $3\sqrt{37}$ cm

② $\sqrt{37}$ cm ③ $2\sqrt{74}$ cm $3 2\sqrt{37}$ cm

⊕ 2 **V**14cm



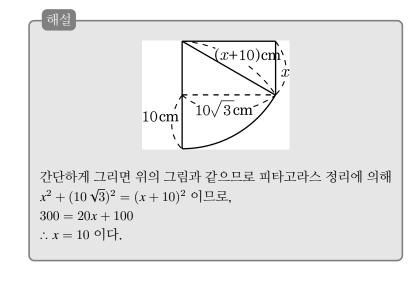
22. 천정에 매달려 있던 거미가 먹이를 먹기 위해 그림과 같이 움직였습니다. 먹이가 천정으로부터 떨어져 있는 거리는?



① 6 cm ② 7 cm ③ 8 cm

4 9 cm

⑤10 cm



23. 두 변의 길이가 3, 5 인 직각삼각형에서 나머지 한 변의 길이를 모두 구하여라.

▶ 답:

▶ 답:

 ▷ 정답: 4

 ▷ 정답: √34

나머지 한 변의 길이를 *a*라 하면

해설

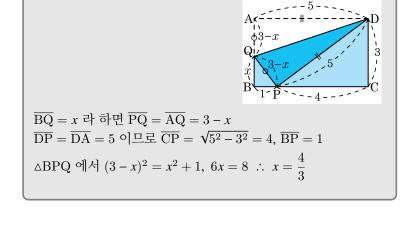
i) 5가 가장 긴 변인 경우 5² = a² + 3² ∴ a = 4

ii) *a*가 가장 긴 변인 경우

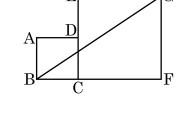
 $\begin{vmatrix} a^{1} & a^{2} + b^{2} & a^{2} & a^{2} \\ a^{2} & a^{2} & a^{2} & a^{2} \end{vmatrix} = 34 \therefore a = \sqrt{34}$

. 직사각형 ABCD 를 다음 그림과 같이 꼭

- $\frac{3}{4}$ ② $\frac{3}{2}$ ③ $\frac{7}{5}$ ④ $\frac{4}{3}$ ③ $\frac{5}{4}$
- $\bigcirc \frac{1}{4} \qquad \bigcirc \frac{1}{2} \qquad \bigcirc \frac{1}{5} \qquad \bigcirc \frac{4}{3}$



25. 다음 그림은 정사각형을 두 개 연결해놓은 그림이다. 정사각형 ABCD의 넓이는 $12\mathrm{cm}^2$, 정사각형 ECFG 의 넓이는 $48\mathrm{cm}^2$ 일 때, $\overline{\mathrm{BG}}$ 의 길이를 구하여라.



 $\underline{\mathrm{cm}}$

ightharpoonup 정답: $2\sqrt{39}$ $\underline{\mathrm{cm}}$

정사각형 ABCD 의 넓이가 $12 \mathrm{cm}^2$ 이므로 $\overline{\mathrm{BC}}$ 의 길이는 $\sqrt{12}$ =

답:

 $2\sqrt{3}$ (cm) 이다. 정사각형 ECFG의 넓이가 $48~\mathrm{cm}^2$ 이므로 $\overline{\mathrm{CF}}$ 의 길이는 $\sqrt{48}$ = $4\sqrt{3}$ (cm)이다.

 $\overline{BG} = \sqrt{(6\sqrt{3})^2 + (4\sqrt{3})^2}$

 $\overline{\mathrm{BF}}=2\sqrt{3}+4\sqrt{3}=6\sqrt{3}(\mathrm{cm})$, $\overline{\mathrm{GF}}=4\sqrt{3}(\mathrm{cm})$

 $= \sqrt{108 + 48} = \sqrt{156}$ $=2\sqrt{39}(\mathrm{cm})$