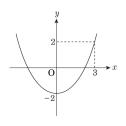
. 이차함수
$$y = x^2$$
 의 그래프에 대한 설명으로 옳은 것을 고르면? (정답 3 개)

- ① 꼭짓점의 좌표는 (1, 1) 이다.
- ② 아래로 볼록하다.
 - ③ 축의 방정식은 x = 0 이다.
 - ④ 점 (-3, 9) 를 지난다.
 - ⑤ $y = -2x^2$ 의 그래프보다 폭이 더 좁다.

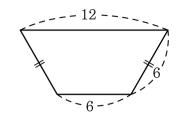

$$y = x^2$$
 의 그래프는 아래로 볼록하고 축의 방정식은 $x = 0$ 이다.

다음 중 아래 주어진 이차함수의 그래프를 x 축에 대칭인 것끼리 바르 게 짝지어 놓은 것은?

 $v = -x^2 - 1$

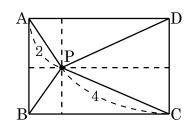
$$y = ax^2 + q$$
 와 x 축에 대칭인 함수는 $y = -ax^2 - q$ 이다.

3. 다음 그림과 같은 그래프를 가지는 이차함수의 식은?


$$(1) \ \ y = 4x^2 + 2$$

①
$$y = 4x^2 + 2$$
 ② $y = -4x^2 - 2$ ③ $y = 3x^2 - 2$
④ $y = \frac{2}{9}x^2 - 2$ ⑤ $y = \frac{4}{9}x^2 - 2$

그래프의 이차함수의 꼭짓점은 (0, -2) 이므로 $y = ax^2 - 2$ 이고 (3, 2) 를 지나므로 2 = 9a - 2, $a = \frac{4}{9}$ 이다.


따라서 그래프의 식은 $y = \frac{4}{9}x^2 - 2$ 이다.

4. 윗변의 길이가 12, 아랫변의 길이가 6, 나머지 두변의 길이가 6 인 등변사다리꼴의 넓이는?

① $21\sqrt{3}$ ② $22\sqrt{3}$ ③ $23\sqrt{3}$ ④ $25\sqrt{3}$ ⑤ $27\sqrt{3}$

5. 정사각형 ABCD 의 내부의 한 점 P 를 잡아 A, B, C, D 와 연결할 때, $\overline{AP}=2, \ \overline{CP}=4 \ \text{이면}, \ \overline{BP}^2+\overline{DP}^2$ 의 값은?

- 6. 대각선의 길이가 12 인 정사각형의 넓이는?
 - ① 36 ② 56 ③ 64 ④ 72 ⑤ 144

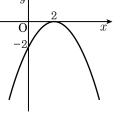
정사각형 한 변을 a 라 하면 대각선은 $\sqrt{2}a$ 이므로 $\sqrt{2}a = 12, a = \frac{12\sqrt{2}}{2} = 6\sqrt{2}$ 따라서, 정사각형의 넓이는 $6\sqrt{2} \times 6\sqrt{2} = 72$ 이다. **7.** 다음 중 원점 O(0,0) 와의 거리가 가장 먼 점은? (3)C(2, 3) ① A(-1, -2) ② B(1, -1)(4) D($\sqrt{2}$, 1) (5) E(-2, -1) 해설 ① $\sqrt{5}$ \bigcirc $\sqrt{2}$ ③ $\sqrt{13}$ $4\sqrt{3}$ ⑤ $\sqrt{5}$

8. 이차함수 $f(x) = -x^2 + ax - 1$ 에 대하여 f(1) = 2, f(-1) = b 일 때, 상수 a, b 의 합 a + b 의 값은?

① 2 ② 1 ③ 0 ④
$$-2$$
 ③ -4

$$f(1) = 2, -1^2 + a \times 1 - 1 = 2, -1 + a - 1 = 2$$

 $\therefore a = 4$
 $f(x) = -x^2 + 4x - 1$ 이므로
 $f(-1) = -(-1)^2 + 4(-1) - 1 = -1 - 4 - 1 = -6$


 $\therefore b = -6$

a + b = 4 + (-6) = -2

9. 이차함수
$$y = a(x - b)^2$$
 의 그래프가 다음 그림과 같을 때, $ax^2 + bx - 2 = 0$ 의 해는?

①
$$x = 1$$
 ② $x = 2$ ③ $x = 0$

$$4 \quad x = -1$$
 $5 \quad x = -2$

- 해설
꼭짓점의 좌표가 (2, 0) 이므로
$$b=2$$
 이다.

$$y = a(x-2)^2$$
 이 점 $(0, -2)$ 를 지나므로 $-2 = a(0-2)^2$
∴ $a = -\frac{1}{2}$

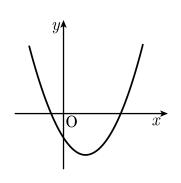
$$\therefore a = -$$

$$ax^2 + bx - 2 = 0$$
 에 $a = -\frac{1}{2}$, $b = 2$ 를 대입하면

$$-\frac{1}{2}x^2 + 2x - 2 = 0$$
$$x^2 - 4x + 4 = 0$$

$$(x-2)^2 = 0$$
$$\therefore x = 2$$

10. 이차함수 $y = -\frac{1}{2}x^2 - 4x + 3$ 의 그래프는 $y = -\frac{1}{2}x^2$ 의 그래프를 x 축의 방향으로 -4 만큼, y 축의 방향으로 k 만큼 평행이동한 것이다.


$$y = -\frac{1}{2}x^2 - 4x + 3$$

$$= -\frac{1}{2}(x^2 - 8x + 16 - 16) + 3$$

$$= -\frac{1}{2}(x - 4)^2 + 8 + 3$$

$$= -\frac{1}{2}(x - 4)^2 + 11$$
따라서 $y = -\frac{1}{2}x^2$ 의 그래프를 x 축으로 4 만큼 y 축으로 11 만큼 평행이동한 것이다.
$$\therefore k = 11$$

11. 이차함수 $y = ax^2 + bx + c(a \neq 0)$ 의 그래프가 다음과 같을 때, a, b, c 중에서 양수인 것을 모두 고른 것은?

아래로 볼록하므로
$$a>0$$

꼭짓점의 x 좌표 $-\frac{b}{2a}>0$ 이므로 $b<0$
 y 절편이 음수이므로 $c<0$

12. 이차함수
$$y = 3x^2 + a(2+b)x - 4$$
는 축의 방정식이 $x = 2$ 이고, 최솟값은 b 이다. 이때, 상수 a , b 의 곱 ab 의 값을 구하면?

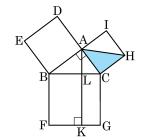
①
$$-\frac{9}{7}$$
 ② $\frac{6}{7}$ ③ 30 ④ $-\frac{16}{7}$ ⑤ $-\frac{96}{7}$

$$y = 3(x-2)^{2} + b$$

$$= 3(x^{2} - 4x + 4) + b$$

$$= 3x^{2} - 12x + 12 + b$$

$$12 + b = -4 : b = -16$$

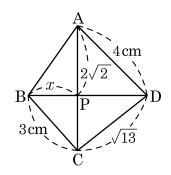

$$2a + ab = 2a - 16a = -12$$

$$-14a = -12$$

 $\therefore ab = \frac{6}{7} \times (-16) = -\frac{96}{7}$

 $\therefore a = \frac{6}{7}$

13. 다음 그림은 $\angle A = 90^{\circ}$ 인 직각삼각형 ABC 에서 세 변을 각각 한 변으로 하는 정사각 형을 그린 것이다. 이 때. AACH 와 넓이가 같지 않은 것을 모두 고르면?

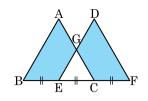

(②) △ABC ③ △CGA ∆ABE ④ △CGL

△CBH .△CGA .△CGL 이다.

△CBH

삼각형의 합동조건과 평행선을 이용해서 △ACH 와 넓이가 같은 것을 찾으면

14. 다음 그림의 $\square ABCD$ 에서 $\overline{AC} \bot \overline{BD}$ 일 때, \overline{BP} 의 길이는?


 $2 \,\mathrm{cm}$ 3 $3 \,\mathrm{cm}$ 4 $4 \,\mathrm{cm}$ 5 $5 \,\mathrm{cm}$

$$(\overline{AB})^2 + 13 = 16 + 9$$
, $\overline{AB} = 2\sqrt{3}$ cm
 $x^2 + (2\sqrt{2})^2 = (2\sqrt{3})^2$ $\therefore x = 2$ cm

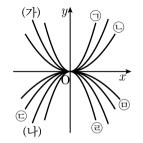
15. 다음 그림과 같이 한 변의 길이가 $4\sqrt{3}$ 인 두 정삼각형 ABC, DEF를 $\overline{BE} = \overline{EC} = \overline{CF}$ 가 되도록 포개어 놓았을 때, 색칠한 부분의 넓이를 구하여라.

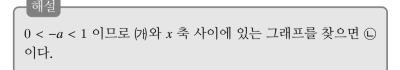
해설

 $= 18 \sqrt{3}$

①
$$18\sqrt{2}$$
 ② $18\sqrt{3}$ ③ $13\sqrt{3}$ ④ $36\sqrt{3}$ ⑤ $9\sqrt{3}$

한 변의 길이가
$$4\sqrt{3}$$
 인 정삼각형이므로 정삼각형 GEC는 한 변이 $2\sqrt{3}$ 인 정삼각형이다.
(색칠한 부분의 넓이)
$$= \left\{ \frac{\sqrt{3}}{4} \times \left(4\sqrt{3}\right)^2 - \frac{\sqrt{3}}{4} \times \left(2\sqrt{3}\right)^2 \right\} \times 2$$
$$= \frac{\sqrt{3}}{4} \times 2 \times \left\{ \left(4\sqrt{3}\right)^2 - \left(2\sqrt{3}\right)^2 \right\}$$
$$= \frac{\sqrt{3}}{4} \times 2 \times (48 - 12)$$

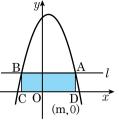

16. 이차함수 $y = x^2 + 2x + 3$ 가 있다. 꼭짓점을 P, y 축과 만나는 점을 Q 라 할 때, 선분 PQ 의 길이를 구하면?


①
$$\sqrt{2}$$
 ② $2\sqrt{2}$ ③ $3\sqrt{2}$ ④ $4\sqrt{2}$ ⑤ $5\sqrt{2}$

$$y = x^{2} + 2x + 3 = (x+1)^{2} + 2$$

꼭짓점 P(-1, 2)
Q 는 y 절편이므로 (0, 3)
$$\overline{PQ} = \sqrt{(-1-0)^{2} + (2-3)^{2}} = \sqrt{2}$$

17. 다음 그림은 모두 꼭짓점이 원점인 포물선이고, $y = x^2$ …(개), $y = -x^2$ …(내)이다. -1 < a < 0일 때, $y = -ax^2$ 의 그래프로 알맞은 것은?



18. 이차함수 $y = x^2 - 4kx + 2k^2 + k - 1$ 의 최솟값을 m 이라 할 때, m 의 최댓값은?

①
$$-\frac{7}{8}$$
 ② -1 ③ $\frac{1}{8}$ ④ 1 ⑤ $-\frac{9}{8}$

해설
$$y = x^2 - 4kx + 2k^2 + k - 1 = (x - 2k)^2 - 2k^2 + k - 1$$

$$m = -2k^2 + k - 1 = -2\left(k - \frac{1}{4}\right)^2 - \frac{7}{8}$$
 이므로 m 의 최댓값은 $-\frac{7}{8}$ 이다.

19. $v = -x^2 + x + 6$ 의 그래프와 x 축에 평행인 직선 I 이 만나는 두 점 A B 에서 x 축에 수선 을 그어 그 수선의 발을 각각 D. C 라 하고. 점D 의 x 좌표를 m 이라고 할 때. \square ABCD 의 둘레의 길이의 최댓값은? $\left(\frac{1}{2} < m < 3\right)$

①
$$\frac{11}{2}$$
 ② $\frac{31}{4}$ ③ 10 ④ $\frac{49}{4}$ ⑤ $\frac{29}{2}$

$$y = -x^2 + x + 6 = -\left(x - \frac{1}{2}\right)^2 + \frac{25}{4}$$
 의 점 A 의 좌표는 $(m, -m^2 + m + 6)$ 이다.
직사각형의 가로의 길이는 $2\left(m - \frac{1}{2}\right)$ 이고,

(□ABCD둘레의 길이)

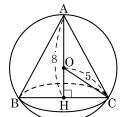
 $=-2\left(m-\frac{3}{2}\right)^2+\frac{29}{2}$

해설

$$= 2\{2\left(m - \frac{1}{2}\right) - m^2 + m + 6\}$$

$$= 2(2m - 1 - m^2 + m + 6)$$

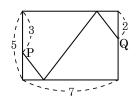
$$= 2(-m^2 + 3m + 5)$$

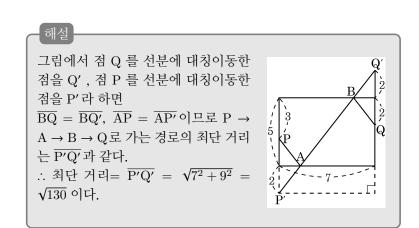

$$m = \frac{3}{2}$$
일 때, 최댓값은 $\frac{29}{2}$ 이다.

은
$$\frac{29}{2}$$
 이다

20. 다음 그림과 같이 반지름의 길이가 5 인 구에 내접해 있는 원뿔의 부피를 구하면?

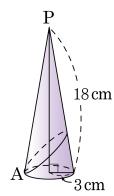
①
$$\frac{74}{3}\pi$$
 ② $\frac{86}{3}\pi$


 $\frac{3}{7}\pi$ $\frac{92}{3}\pi$

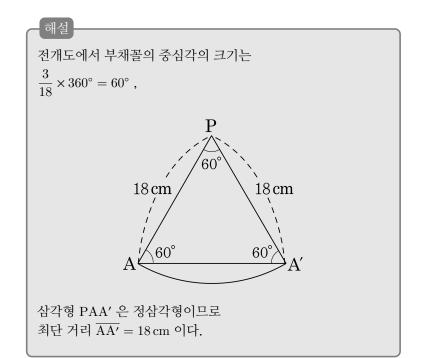

구의 반지름이 5 이므로 $\overline{\mathrm{OH}}=3$ 이고 $\overline{\mathrm{CH}}=4$ 이다.

따라서 원뿔의 부피는 $\pi \times 4^2 \times 8 \times \frac{1}{3} = \frac{128}{3} \pi$ 이다.

21. 다음 그림과 같은 직사각형 모양의 상자에서 개미가 입구 P를 출발하여 다음 그림과 같이 움직여 출구 Q로 빠져 나왔다. 이 때, 개미가 지나가 최단 거리는?



- ① $\sqrt{70}$
- ② $\sqrt{105}$
- $4 \ 2\sqrt{35}$ $5\sqrt{5}$


 $\sqrt{130}$

22. 다음 그림과 같이 모선의 길이가 18cm , 밑면의 원의 반지름의 길이가 3cm 인 원뿔이 있다. 밑면의 한 점 A 에서 옆면을 지나 다시 점 A 로 되돌아오는 최단거리는?

18cm

- ① 15cm ② 15 $\sqrt{2}$ cm
- 4 $18\sqrt{2}$ cm 5 $18\sqrt{3}$ cm

