• 이차함수 $y = ax^2 + bx - 3$ 이 x = 2 에서 최댓값 5 를 가질 때, 상수 a, b 의 합 a + b 의 값을 구하여라.

이차함수
$$y = ax^2 + bx - 3$$
 이 $x = 2$ 에서 최댓값 5 를 가지므로

-4a = b, 4a + 5 = -3

 $y = a(x-2)^2 + 5 = ax^2 - 4ax + 4a + 5$ 위의 식이 $y = ax^2 + bx - 3$ 과 일치하므로

$$\therefore a = -2, \ b = 8$$
$$\therefore a + b = 6$$

$$y = -(x - \frac{3}{2})^2 + \frac{1}{4}$$
 이므로 $x = \frac{3}{2}$ 가 x 의 값의 범위 $-1 \le x \le 2$ 에 포함되므로

$$x = \frac{3}{2}$$
 에서 최솟값 $\frac{1}{4}$ 를 갖고,

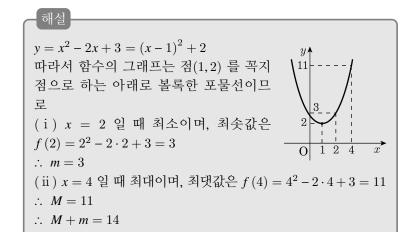
$$x = -1$$
 에서 최댓값 -6 을 갖는다.
따라서 최솟값과 최댓값의 합은 $-\frac{23}{4}$ 이다.

3. 이차함수 $y = ax^2 + bx + c$ 의 그래프가 점 (1,5) 를 지나고, x = -1 일 때 최솟값 -3 을 가진다. 이 때, abc 의 값은?

①
$$-10$$
 ② -8 ③ -6 ④ -4 ⑤ -2

$$y = a(x+1)^2 - 3$$
 에 $(1, 5)$ 를 대입하면 $a = 2$
따라서 $y = 2(x+1)^2 - 3$ 을 전개하면 $y = 2x^2 + 4x - 1$ 이므로 $a = 2$, $b = 4$, $c = -1$

- 4. $2 \le x \le 4$ 에서 이차함수 $y = x^2 2x + 3$ 의 최댓값은 M , 최솟값은 m 이다. M + m 의 값은?
 - ① 10 ② 11 ③ 12 ④ 13 ⑤ 14



이차함수 $y = x^2 - 2x - 3$ $(0 \le x \le 3)$ 의 최댓값과 최솟값의 합은?

$$y = x^2 - 2x - 3 = (x - 1)^2 - 4$$
에서

x = 1 일 때 최솟값: -4. x = 3일 때 최댓값: 0

최댓값+최솟값= -4

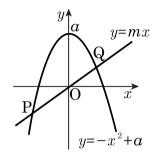
6. 이차함수 $y = x^2 - ax + 3$ 의 그래프가 직선 y = 0과 두 점에서 만나기 위한 자연수 a의 최솟값을 구하여라.

 $a < -2\sqrt{3}$ 또는 $a > 2\sqrt{3}$

따라서 자연수 a의 최솟값은 4이다.

해설
이차함수
$$y = x^2 - ax + 3$$
의 그래프가 x 축 $(y = 0)$ 과 서로 다른
두 점에서 만나야 한다.
즉 이차방정식 $x^2 - ax + 3 = 0$ 이 서로 다른 두 실근을 가져야
하므로 판별식을 D 라 하면
 $D = a^2 - 12 > 0$ 에서

7. 다음 그림과 같이 이차함수 $y = -x^2 + a$ 의 그래프와 직선 y = mx가서로 다른 두 점 P, Q에서 만난다. 점 Q의 x좌표가 $\sqrt{5} - 1$ 일 때, a + m의 값을 구하여라. (단, a, m은 유리수)



해섴

$$y = -x^2 + a$$
 와 $y = mx$ 가 만나는 두 점 P, Q 의 x 좌표는 방정식이 $-x^2 + a = mx$ 의 근이다.

점 Q의 x 좌표가 $\sqrt{5}-1$ 이므로

방정식 $x^2 + mx - a = 0$ 의 한 근이 $\sqrt{5} - 1$ 이다.

그런데 a 와 m 이 유리수이므로 다른 한 근은 $-\sqrt{5}-1$ 이다. 따라서, 이차방정식의 근과 계수의 관계에 의하여 $-m=\left(\sqrt{5}-1\right)+\left(-\sqrt{5}-1\right)=-2$

$$-a = \left(\sqrt{5} - 1\right)\left(-\sqrt{5} - 1\right) = -4$$

 $\therefore a = 4, \ m = 2 \qquad \therefore a + m = 6$

8. 함수 $y = -(x^2 + 4x + 5)^2 - 2(x^2 + 4x) - 6$ 이 x = m 에서 최댓값 M을 갖는다. 이 때, M + m의 값을 구하여라.

$$y = -(x^2 + 4x + 5)^2 - 2(x^2 + 4x) - 6$$
 에서 $x^2 + 4x + 5 = t$ 로 놓으면 $y = -(x^2 + 4x + 5)^2 - 2(x^2 + 4x + 5) + 4$ $= -t^2 - 2t + 4 = -(t+1)^2 + 5$ 그런데 $t = x^2 + 4x + 5 = (x+2)^2 + 1 \ge 1$ 이므로 $t = 1$, 즉 $t = -2$ 일 때 최댓값 $t = 1$ 같는다. 따라서, $t = -2$ 에 $t = 1$ $t = 1$

① 2 ② 4 ③ 6

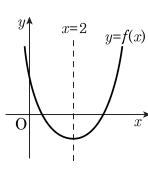
f(f(x)) = 0에서 f(x) = t로 놓으면 f(t) = 0을 만족시키는 두 실근은

t = 2 - k 또는 f = 2 + k(0 < k < 2)로 놓을 수 있다.

해설

양의 방향과 서로 다른 두 점에서 만난다.)

9.



이차함수 y = f(x)의 그래프가 아래 그림과 같을 때, x에 대한 방정식 $(f \circ f)(x) = 0$ 의 모든 실근의 합은? (단, y = f(x)의 그래프는 x축의

⑤ 10

$$\therefore f(x) = 2 - k \stackrel{\text{He}}{=} f(x) = 2 + k$$

$$y \qquad x = 2 \qquad y = f(x)$$

$$y \qquad y \qquad y = 2 - k$$

$$y \qquad y \qquad y = 2 - k$$

$$y \qquad y \qquad y \qquad y = 2 - k$$

(ii) f(x) = 2 + k를 만족시키는 x의 값도 마찬가지로 생각하면 $x = 2 - \beta$ 또는 $x = 2 + \beta$ 따라서 f(f(x)) = 0을 만족시키는 모든 실근의 합은 $(2 - \alpha) + (2 + \alpha) + (2 - \beta) + (2 + \beta) = 8$

(i) f(x) = 2 - k를 만족시키는 x의 값은

직선 v = 2 - k의 교점의 x좌표이므로

y = f(x)의 그래프와

 $x = 2 - \alpha \stackrel{\square}{=} x = 2 + \alpha$