
1. 다음 그림과 같은 평행사변형 ABCD 에서 $\overline{BC}=5 \mathrm{cm}, \ \overline{CD}=3 \mathrm{cm}$ 일 때, $\overline{AC} + \overline{BD}$ 의 값은?

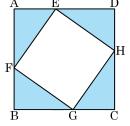
 $(3)(2\sqrt{13}+4)$ cm

① $(2\sqrt{13}+2) \text{ cm}$ ② $(4\sqrt{13}+2) \text{ cm}$ $(4\sqrt{13}+4)$ cm

 $\Im 10\,\mathrm{cm}$

해설

삼각형 BCD 에서 피타고라스 정리에 따라 $5^2 = 3^2 + \overline{BD}^2$ $\overline{\mathrm{BD}} > 0$ 이므로 $\overline{\mathrm{BD}} = 4\,\mathrm{cm}$ 이다.


평행사변형의 대각선은 다른 대각선을 이등분하므로 대각선끼리의 교점을 O 라 할 때,

삼각형 ABO 에 대해서 $\overline{AB} = 3 \, \text{cm}, \ \overline{BO} = 2 \, \text{cm}$

피타고라스 정리에 의해서 $\overline{\mathrm{AO}} = \sqrt{3^2 + 2^2} = \sqrt{13} (\,\mathrm{cm})$

 $\therefore \overline{AC} + \overline{BD} = (4 + 2\sqrt{13}) \, \mathrm{cm}$ 이다.

다음 정사각형 ABCD 에서 $\overline{\mathrm{AF}}=\overline{\mathrm{BG}}=$ 2. $\overline{\mathrm{CH}}=\overline{\mathrm{DE}}$ 이고, 4 개의 직각삼각형의 넓이 의 합이 $18\sqrt{3}$ 이 성립한다. $\Box ABCD$ 의 둘 레의 길이가 $12\left(1+\sqrt{3}\right)$ 일 때, $\overline{AE}^2+\overline{DE}^2$ 의 값을 구하여라.

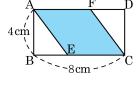
▷ 정답: 36

답:

 $\overline{\mathrm{AE}}=a,\,\overline{\mathrm{DE}}=b$ 라고 할 때,

직각삼각형의 넓이의 합이 $18\sqrt{3}$ 이므로 ΔAEF 의 넓이는 $\frac{18\sqrt{3}}{4}$

 $=\frac{1}{2}ab$

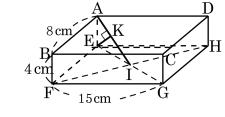

 $\square ABCD$ 의 둘레의 길이가 $12\left(1+\sqrt{3}\right)$ 이므로 $4\left(a+b\right)$ = $12\left(1+\sqrt{3}\right)$

따라서 $a+b=3+3\sqrt{3},\,ab=\frac{18\sqrt{3}}{2}=9\sqrt{3}$ 이므로 $a^2+b^2=$

 $(a+b)^2 - 2ab = 9 + 18\sqrt{3} + 27 - 18\sqrt{3} = 36$ 이다.

다음 직사각형 \overline{ABCD} 에서 $\overline{AE}=\overline{CE}$ 가 **3**. 되도록 점 E 를 잡고, $\overline{AE} = \overline{AF}$ 가 되도록 4 cm 점 F 를 잡을 때, □AECF 의 넓이를 구하 여라.

 $\underline{\mathrm{cm}^2}$


▷ 정답: 20<u>cm²</u>

답:

 $\overline{\text{CE}} = x(\text{cm})$ 라 하면

해설

 $x^2 = 4^2 + (8 - x)^2 :: x = 5$ $\therefore \Box AECF = 5 \times 4 = 20(cm^2)$ **4.** 다음 그림과 같은 직육면체에서 점 I 는 밑면의 대각선의 교점이고, 점 E 에서 $\overline{\mathrm{AI}}$ 에 내린 수선의 발을 K 라 할 때, $\overline{\mathrm{EK}}$ 의 길이를 구하면?

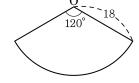
- ① $\frac{66\sqrt{353}}{353}$ ④ $\frac{69\sqrt{353}}{353}$
- ② $\frac{67\sqrt{353}}{353}$ ⑤ $\frac{70\sqrt{353}}{353}$

$$\overline{EG} = \sqrt{8^2 + 15^2} = 17 \quad \therefore \overline{EI} = \frac{17}{2}$$

$$\overline{AI} = \sqrt{4^2 + \frac{17^2}{4}} = \frac{\sqrt{353}}{2}$$

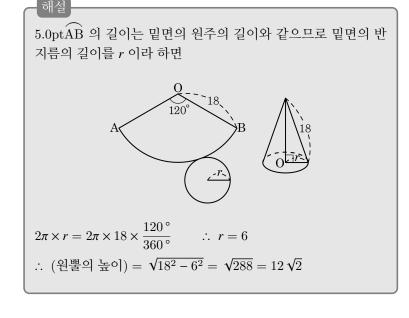
$$\triangle AEI 의 넓이를 이용하면$$

$$\frac{1}{2} \times \overline{AE} \times \overline{EI} = \frac{1}{2} \times \overline{AI} \times \overline{EK}$$

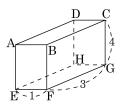

$$17 = \frac{1}{2} \times \frac{\sqrt{353}}{2} \times \overline{EK} \quad \therefore \overline{EK} = \frac{68\sqrt{353}}{353}$$

$$\frac{1}{-\times AE} \times \overline{EI} = \frac{1}{-\times AI} \times \overline{EI}$$

$$\frac{1}{2} \times AE \times EI = \frac{1}{2} \times AI \times EI$$


$$17 = \frac{1}{2} \times \frac{7000}{2} \times EK \quad \therefore EK = \frac{35700}{353}$$

5. 다음 그림과 같은 반지름의 길이가 18, 중심 각의 크기가 120°인 부채꼴로 밑면이 없는 원뿔을 만들 때, 이 원뿔의 높이를 구하여 라.



▶ 답:

> 정답: 12 √2

6. 다음 그림은 세 모서리의 길이가 각각 1, 3, 4 인 직육면체이다. 꼭짓점 A 에서 G 까지 면을 따라 움직일 때, 가장 짧은 거리를 구하여라.

▶ 답:

ightharpoonup 정답: $4\sqrt{2}$

(i) \overline{BC} 를 지날 때, $\triangle AGF$ 는 직각삼각형이므로 $\overline{AG}^2 = \overline{AF}^2 + \overline{FG}^2$

$$\overline{AG}=\sqrt{(1+4)^2+3^2}=\sqrt{34}$$
 D C G A 1-B -4-F

 $\overline{AG}^2 = \overline{AC}^2 + \overline{CG}^2$ $\overline{AG} = \sqrt{(1+3)^2 + 4^2} = \sqrt{32} = 4\sqrt{2}$

(iii) $\overline{\mathrm{CD}}$ 를 지날 때, $\Delta\mathrm{AHG}$ 는 직각삼각형이므로

 $\overline{AG}^2 = \overline{AH}^2 + \overline{HG}^2$

 $\overline{AG} = \sqrt{(4+3)^2 + 1^2} = \sqrt{50}$

7. 다음 그림과 같이 한 변의 길이가 4 인 정사면체 A – BCD 에서 $\overline{\text{CD}}$ 의 중점을 E 라 하고, \angle AEB 를 x 라고 할 때, $\sin x \times \cos x$ 의 값이 $\frac{b\sqrt{2}}{a}$ 이 다. a+b 의 값을 구하시오. (단, a, b 는 서로소)

▶ 답: ▷ 정답: 11

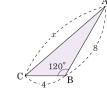
 $\overline{ ext{CE}}=2$ 이고 점 $ext{A}$ 에서 $\overline{ ext{BE}}$ 에 내린 수선의 발을 $ext{H}$ 라 하면 점 $ext{H}$ 는 $\triangle BCD$ 의 무게중심이므로 $\overline{EH}=rac{1}{3}\overline{EB},\ \overline{EB}=2\sqrt{3}$

$$\overline{EH} = \frac{1}{3} \times 2\sqrt{3} = \frac{2\sqrt{3}}{3} , \overline{AE} = 2\sqrt{3}$$

$$\overline{AH} = \frac{4\sqrt{6}}{3}$$

$$\overline{AH} = \frac{4\sqrt{6}}{3}$$

$$\sin x \times \cos x = \frac{\frac{4\sqrt{6}}{3}}{2\sqrt{3}} \times \frac{2\sqrt{3}}{\frac{3}{2\sqrt{3}}} = \frac{\frac{24\sqrt{2}}{9}}{12} = \frac{2\sqrt{2}}{9}$$
 이다.

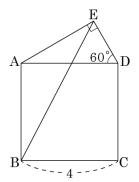

$$\therefore a + b = 9 + 2 = 11$$

8. 방정식 $x^2 - (\sqrt{3} + 1)x + \sqrt{3} = 0$ 의 두 근을 $\tan a$, $\tan b$ 라고 할 때, b 의 크기는? (단, $\tan a < \tan b$, a, b 는 예각)

① 0° ② 30° ③ 45° ④ 60° ⑤ 80°

해설 $x^{2} - (\sqrt{3} + 1)x + \sqrt{3} = 0$ $(x - 1)(x - \sqrt{3}) = 0$ $x = 1 또는 x = \sqrt{3} \text{ 이다.}$ $\tan a < \tan b \text{ 이므로 } \tan a = 1, \tan b = \sqrt{3} \text{ 이다.}$ $\therefore b = 60^{\circ}$

9. 다음 그림의 $\triangle ABC$ 에서 \overline{AC} 의 길이는?


① $\sqrt{7}$ ② $6\sqrt{2}$ ③ $3\sqrt{7}$ ④ $7\sqrt{2}$

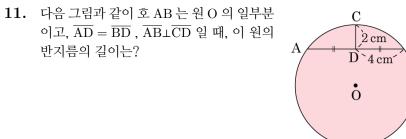
점 A 에서 내린 수선과 $\overline{\mathrm{BC}}$ 의 연장선이 만나는 점을 H 라 할 때

 $\overline{AH} = 8 \times \sin 60^{\circ} = 4\sqrt{3}$

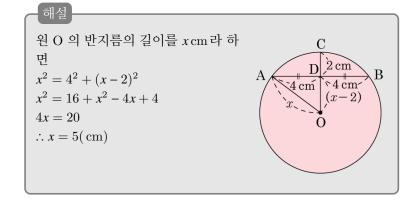
 $\overline{BH} = 8 \times \cos 60^{\circ} = 4$ $\therefore \overline{AC} = \sqrt{(4\sqrt{3})^2 + 8^2} = 4\sqrt{7}$

10. 다음 그림과 같이 한 변의 길이가 4인 정사각형 ABCD의 한 변 AD를 빗변으로 하는 직각삼각형 AED에서 $\angle D = 60$ °일 때, $\triangle ABE$ 의 넓이를 구하여라.

▷ 정답: 6


▶ 답:

$$\sin 60^{\circ} = \frac{\overline{AE}}{\overline{AD}} = \frac{\overline{AE}}{4} = \frac{\sqrt{3}}{2} \qquad \therefore \overline{AE} = 2\sqrt{3}$$


$$\angle EAB = 30^{\circ} + 90^{\circ} = 120^{\circ} \circ | \Box \Xi$$

$$\triangle ABE = \frac{1}{2} \times 2\sqrt{3} \times 4 \times \sin 60^{\circ}$$

$$= \frac{1}{2} \times 2\sqrt{3} \times 4 \times \frac{\sqrt{3}}{2} = 6$$

① 4 cm ② 5 cm ③ 6 cm ④ 7 cm ③ 8 cm

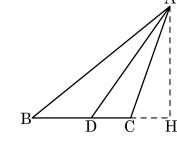
- - 면?
 ① 7 ② 9 ③ 10
 ④ 12 ⑤ 13
 - $\angle AOC = 60^{\circ}, \ \angle ATC = 30^{\circ}, \overline{OA} = 12$ $1: 2 = 12: \overline{OT} \ \therefore \overline{OT} = 24$ $\therefore \overline{CT} = 24 - 12 = 12$

 $\overline{AB}=2,\,\overline{BC}=3$ 인 직사각형 ABCD 에서 변 BC 위의 점 P 와 변 AD 위의 점 Q 에 대하여 사각형 APCQ가 마름모일 때, 마름모 APCQ의 넓이를 구하여라.

▶ 답:

ightharpoonup 정답: $rac{13}{3}$

해설

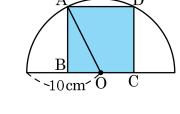

마름모는 네 변의 길이가 같으므로 $\overline{\mathrm{AP}}=x$ 로 놓으면

 $\overline{PC} = x$, $\overline{BP} = 3 - x$ $\triangle ABP$ 에서 $\overline{AP}^2 = \overline{AB}^2 + \overline{BP}^2$ 이므로 $2^2 + (3-x)^2 = x^2$ 6x = 13

 $\therefore \ x = \frac{13}{6}$

따라서 마름모 APCQ 의 넓이는 $\frac{13}{6} \times 2 = \frac{13}{3}$ 이다.

14. 다음 그림과 같이 $\angle C$ 가 둔각인 $\triangle ABC$ 에서 $\overline{AB}=9$, $\overline{AC}=6$ 이고, $\angle A$ 의 이등분선이 변 BC 와 만나는 점을 D 라 하면 $\overline{BD}=3$ 이다. 이 때, 점 A 에서 변 BC 의 연장선에 내린 수선 \overline{AH} 의 길이를 구하여라.


▷ 정답: 4√2

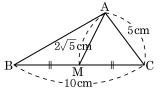
▶ 답:

 $\therefore h = 4\sqrt{2} \ (\because \ h > 0)$

 $\triangle ABC$ 에서 $\angle BAD = \angle CAD$ 이므로 $\overline{AB}: \overline{AC} = \overline{BD}: \overline{DC}$ 9 : $6 = 3: \overline{DC}: \overline{DC} = 2$ 직각삼각형 ABH 에서 $\overline{CH} = x$, $\overline{AH} = h$ 라 하면 $h^2 = 9^2 - (3 + 2 + x)^2 \cdots$ ① 마찬가지로 $\triangle ACH$ 에서 $h^2 = 6^2 - x^2 \cdots$ ② ① ①-① 에서 $9^2 - (x + 5)^2 = 6^2 - x^2$ $81 - x^2 - 10x - 25 = 36 - x^2$ - 10x = -20 $\therefore x = 2$ x = 2 를 ②에 대입하면 $h^2 = 6^2 - 2^2 = 32$

15. 다음 그림과 같이 반지름의 길이가 $10\,\mathrm{cm}$ 인 반원 O 에 내접하는 정사각형 ABCD 의 한 변의 길이를 구하여라.

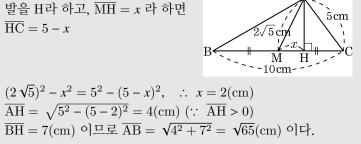
 $\underline{\mathrm{cm}}$


ightharpoonup 정답: $4\sqrt{5}$ $\underline{\mathrm{cm}}$

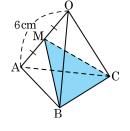
▶ 답:

 $\overline{ ext{OC}} = \overline{ ext{OB}} = a$ 라 하면 $\overline{ ext{CD}} = 2a$ $\overline{ ext{OD}} = \sqrt{a^2 + (2a)^2} = \sqrt{5}a = 10$ 이므로 $\therefore a = \frac{10}{\sqrt{5}} = 2\sqrt{5} \text{ (cm)}$

 $\square ABCD$ 의 한 변의 길이는 $4\sqrt{5}(\,\mathrm{cm})$ 이다.


16. 다음 그림과 같이 $\triangle ABC$ 에서 \overline{BC} 의 중 점을 M이라 하고, $\overline{\mathrm{BC}}=10\,\mathrm{cm},\ \overline{\mathrm{CA}}=$ $5\mathrm{cm},\ \overline{\mathrm{AM}}=2\sqrt{5}\mathrm{cm}$ 라 할 때, $\overline{\mathrm{AB}}$ 의 길이를 구하여라.

ightharpoonup 정답: $\sqrt{65}$ $\underline{\mathrm{cm}}$


답:

점 A 에서 변 BC 에 내린 수선의 발을 H라 하고, $\overline{\text{MH}} = x$ 라 하면 $\overline{\mathrm{HC}} = 5 - x$

 $\underline{\mathrm{cm}}$

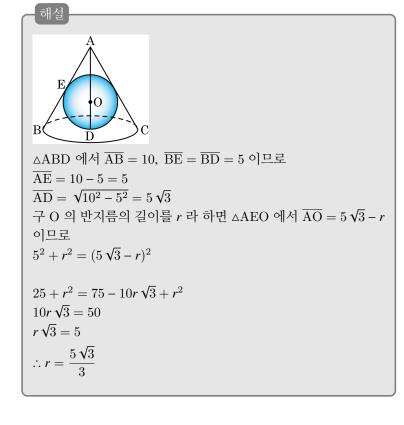
17. 다음 그림과 같이 한 모서리의 길이가 6 cm 인 정사면체에서 \overline{OA} 의 중점을 M 이라 할 때, ΔMBC 의 넓이를 구하여라.

ightharpoonup 정답: $9\sqrt{2}$ cm^2

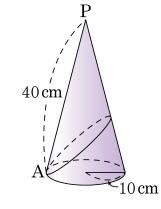
▶ 답:

 $\Delta \mathrm{MBC} \leftarrow \overline{\mathrm{BM}} = \overline{\mathrm{CM}} = 3\,\sqrt{3}\,\,\,(\mathrm{\,cm})$ 인 이등변삼각형

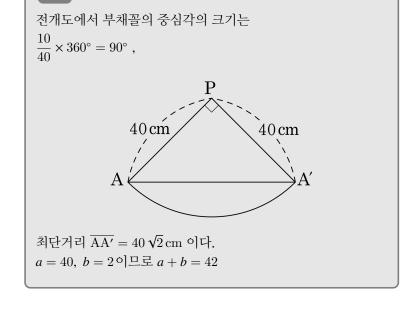
 $\left(\frac{\square}{\varpi}\circ\right] = \sqrt{(3\sqrt{3})^2 - 3^2} = 3\sqrt{2} \text{ (cm)}$ $\therefore (\triangle MBC의 넓 \circ) = \frac{1}{2} \times 6 \times 3\sqrt{2}$ $= 9\sqrt{2} \text{ (cm}^2)$


 $\underline{\mathrm{cm}^2}$

$$=9\sqrt{2} \text{ (cm}^2)$$

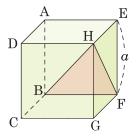

18. 모선의 길이가 10, 밑면의 반지름의 길이가 5 인 원뿔에 내접한 구의 반지름의 길이를 구하여라.

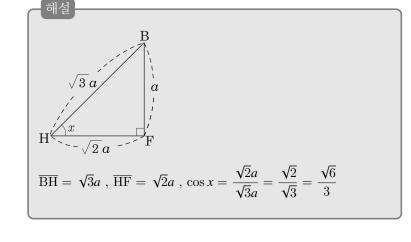
답:


ightharpoonup 정답: $\frac{5\sqrt{3}}{3}$

19. 다음 그림과 같이 밑면의 반지름의 길이가 10 cm 이고 모선의 길이가 40 cm 인 원뿔이 있다. 원뿔의 밑면의 한 점 A 에서 출발하여 옆면을 따라 한 바퀴 돌아 다시 점 A 로 돌아오는 최단 거리가 $a \sqrt{b} \text{cm}$ 라고 할 때, a+b 의 값은?(단, b는 최소의 자연수)

① 40 ② 42 ③ 44 ④ 46 ⑤ 50




 $oldsymbol{20}$. 다음 그림에서 정육면체의 한 변의 길이는 a이다. $\angle BHF = \angle x$ 일 때, $\cos x$ 의 값은? (단, BH는 정육면체의 대각선이다.)

21. 다음 그림의 $\triangle ABC$ 에서 $\angle BAC=90^\circ$, $\overline{AH} \bot \overline{BC}$ 이고 $\angle HAC=x$ 라 할 때, $\tan x$ 의 값은?

- ① $\frac{1}{3}$ ② $\frac{3}{5}$ ③ $\frac{3}{4}$ ④ $\frac{4}{5}$ ⑤ $\frac{4}{3}$

 \triangle AHC \hookrightarrow \triangle BAC (AA 닮음), $\angle x = \angle$ ABC $\therefore \tan x = \frac{\overline{AC}}{\overline{AB}} = \frac{6}{8} = \frac{3}{4}$

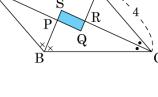
 $oldsymbol{22}$. 산의 높이 $\overline{ ext{CH}}$ 를 측정하기 위하여 수평면 위에 거리가 30m 가 되도록 두 점 A, B 를 잡고, 필요한 부분을 측정한 결과가 다음 그 림과 같을 때, $\overline{\mathrm{CH}}$ 의 길이를 구하면?

3 14

- ① 12 **4**)15
- ② 13
- **⑤** 16

 $\overline{\text{CH}}$ 의 길이를 x 라 하면 $\overline{\text{CH}}=\overline{\text{AH}}=x$ $\overline{\text{BH}}=\frac{x}{\tan 30^\circ}=\sqrt{3}x$

 $\overline{AB} = \sqrt{\overline{BH}^2 + \overline{AH}^2}$ $= \sqrt{3x^2 + x^2}$


=2x $= 30 \, (m)$

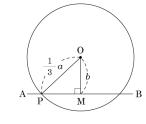
 $\therefore x = 15 \, (\mathrm{m})$

23. 다음 그림과 같은 평행사변형 ABCD 에서 ∠D 가 ∠A 의 크기의 2 배일 때, 네 각의 이등분선이 만드는 사각형 Q PQRS 의 넓이가 $a\sqrt{b}$ 이다. a+b

의 값은?(단, b는 최소의 자연수)

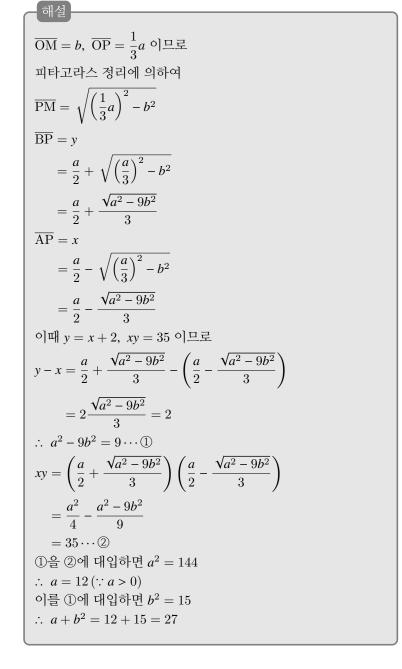
3 3 ① 1 ② 2

⑤ 5


 $\angle A=\angle C=60\,^\circ$, $\angle B=\angle D=120\,^\circ$ 이므로 $\Box PQRS$ 는 직사각

형이다. $\overline{\mathrm{PS}} = \overline{\mathrm{BS}} - \overline{\mathrm{BP}} = 6 \cdot \cos 60^{\circ} - 4 \cdot \cos 60^{\circ} = 2 \times \frac{1}{2} = 1$

 $\overline{PQ} = \overline{AQ} - \overline{AP} = 6a \times \cos 30^{\circ} - 4 \times \cos 30^{\circ} = 2 \times \frac{\sqrt{3}}{2} = \sqrt{3}$

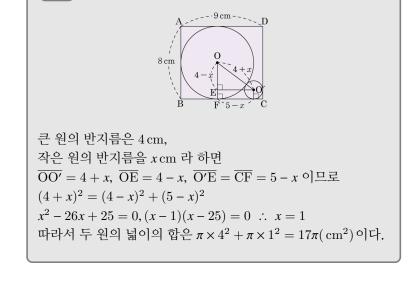

 $\therefore S = \overline{PS} \times \overline{PQ} = \sqrt{3}$ 이다. 따라서 a + b = 1 + 3 = 4 이다.

24. 다음 그림과 같이 길이가 a 인 선분 AB 의 중점 M 에서의 수선과 원의 중심 O 가 만난다. $\overline{OM} = b$ 이고 반지름의 길이가 $\frac{1}{3}a$ 인 원과 \overline{AB} 가 만나는 한 점을 P 라 한다. 선분 AP 의 길이를 x 라 하고 선분 BP 의 길이를 y 라 하면 y = x + 2, xy = 35 의 식이 성립한다고 할 때, $a + b^2$ 의 값을 구하여라.



답:▷ 정답: 27

-



25. 다음 그림과 같이 가로의 길이가 9 cm, 세로의 길이가 8 cm 인 직사각 형에 서로 접하는 두 원이 있다. 이때 큰 원과 작은 원의 넓이의 합은?

- 4πcm²
 18πcm²
- 2 16πcm²
 5 20πcm²
- $317\pi \text{cm}^2$
- _

해설

