다음 그림의 평행사변형 ABCD 에서 ∠A + ∠D 의 값을 구하여라.

B_\(\frac{70^\circ}{10^\circ}\)

 답:

 ▷ 정답:
 180°

✓ 38 · 180_

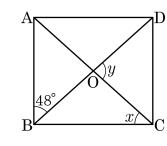
평행사변형의 이웃하는 두 각의 크기의 합은 180°이다.

- 2. 다음 조건을 만족하는 □ABCD 중에서 평행사변형이 되는 것은? (단, 점 O 는 □ABCD 의 두 대각선의 교점이다.)
 - ① $\overline{AD} = 5 \text{cm}, \overline{CO} = 5 \text{cm}, \overline{BD} = 10 \text{cm}$ ② $\overline{AB} = \overline{DC} = 6 \text{cm}, \overline{BC} = \overline{AD} = 5 \text{cm}$
 - $\overline{\text{AB}} = \overline{\text{DC}} = 6\text{cm}, \overline{\text{BC}} = \overline{\text{AD}} = 5\text{cm}$
 - ③ $\angle A = 130^{\circ}, \angle B = 45^{\circ}, \angle C = 130^{\circ}$
 - 4 $\overline{AB} = 5 \text{cm}, \overline{BC} = 5 \text{cm}, \overline{DC} = 6 \text{cm}, \overline{DA} = 6 \text{cm}$ 3 $\overline{AB} = \overline{DC}, \overline{BC} = \overline{DC}$

두 쌍의 대변의 길이가 각각 같은 사각형은 평행사변형이다.

해설

3. 직사각형 ABCD 에서 $\angle x + \angle y$ 를 구하면?



④126° ⑤ 134°

 $\overline{\mathrm{OB}} = \overline{\mathrm{OC}}$ $\angle x = 90^{\circ} - 48^{\circ} = 42^{\circ}$, $\angle y = 2 \angle x = 84^{\circ}$

정사각형의 한 내각의 크기는 90°, 대각선의 길이가 같으므로

 $\therefore \ \angle x + \angle y = 126^{\circ}$

① 42° ② 84° ③ 90°

해설

- **4.** 다음 도형의 성질에 대한 설명 중 옳지 <u>않은</u> 것은?
 - 마름모의 두 대각선은 직교한다.
 직사각형의 두 대각선의 길이는 같다.
 - ③ 등변사다리꼴의 두 대각선은 수직으로 만난다.
 - ④ 등변사다리꼴의 평행하지 않은 두 변의 길이는 같다.
 - ⑤ 정사각형의 두 대각선은 서로 다른 것을 이등분한다.

③ 등변사다리꼴의 두 대각선의 길이가 같고, 대각선은 수직으로

만나지 않는다.

5. 다음 보기의 사각형 중에서 두 대각선이 서로 다른 것을 수직이등분 하는 것은 모두 몇 개인지 구하여라.

 ① 사다리꼴
 ① 등변사다리꼴

 ② 평행사변형
 ② 직사각형

 ① 마름모
 ⑥ 정사각형

개

정답: 2<u>개</u>

▶ 답:

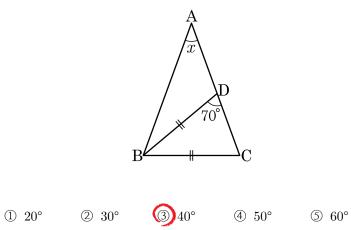
두 대각선이 서로 다른 것을 이등분하는 것은 평행사변형, 직사

해설

각형, 마름모, 정사각형이 있다. 그러나 두 대각선이 서로 다른 것을 수직이등분하는 것은 마름모 의 성질이므로 이를 만족하는 것은 마름모와 정사각형 2 개이다.

의 경찰이므로 이글 한국에는 것은 마음보과 경시각 중 2 계이다

6. $\overline{AB} = \overline{AC}$ 인 이등변삼각형에서 $\overline{BC} = \overline{BD}$ 가 되도록 \overline{AC} 위에 점 D 를 잡을 때, Δx 의 값은?

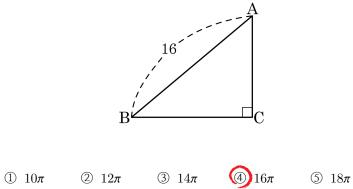


 ΔBCD 에서 $\overline{BC}=\overline{BD}$ 이므로 이등변삼각형 $\angle BDC=\angle BCD=70^\circ$

 $\triangle ABC \leftarrow \overline{AB} = \overline{AC}$ 인 이등변삼각형이므로 $\angle ABC = \angle ACB = 70^\circ$ 따라서 $\angle x + \angle ABC + \angle ACB = 180^\circ$ 이므로 $\angle x + 70^\circ + 70^\circ = 180^\circ$ $\angle x + 140^\circ = 180^\circ$

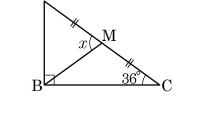
 $2x + 140^{\circ} = 180$ $\therefore \angle x = 40^{\circ}$

7. 다음 그림은 $\angle C$ 가 직각인 삼각형이다. $\triangle ABC$ 의 외접원의 둘레의 길이는?



직각삼각형의 외심은 빗변의 중심에 위치하므로 $\triangle ABC$ 의 외접원의 중심은 \overline{AB} 의 중점이다. 따라서 외접원의 반지름은 8이므로 둘레는 $2\pi r = 2 \times \pi \times 8 = 16\pi$ 이다

다음 그림과 같은 직각삼각형 ABC 에서 빗변 AC 의 중점은 M 이고 8. ∠ACB = 36° 일 때 ∠AMB 의 크기는?



① 62° ② 64° ③ 68°

4 70°

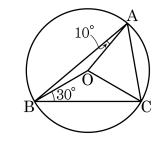
직각삼각형의 외심은 빗변의 중점이므로 $\overline{\mathrm{AM}} = \overline{\mathrm{CM}} =$

 $\overline{\mathrm{BM}}\cdots \bigcirc$ 따라서 ΔBMC 는 이등변삼각형이다.

해설

 $\angle MCB = \angle MBC = 36^{\circ}$ $\angle AMB = \angle MCB + \angle MBC = 36^{\circ} + 36^{\circ} = 72^{\circ}$

다음 그림에서 점 O는 \triangle ABC의 외심이다. \angle OAB = 10° , \angle OBC = 9. 30°, ∠OAC의 크기는?



① 40° ② 45°

③50°

④ 55°

⑤ 60°

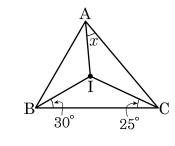
 $\angle OAB = \angle OBA$, $\angle OBC = \angle OCB$, $\angle OAC = \angle OCA$ 이므로

해설

 $\angle OAB + \angle OBC + \angle OCA = 90\,^{\circ}$

 $\therefore \angle \mathrm{OAC} = \angle \mathrm{OCA} = 90\,^{\circ} - 40\,^{\circ} = 50\,^{\circ}$

10. 다음 그림에서 점 I가 $\triangle ABC$ 의 내심 일 때, $\angle x$ 의 크기는?



① 15° ② 20° ③ 25° ④ 30° ⑤

 $30^{\circ} + 25^{\circ} + \angle x = 90^{\circ}$ $\therefore \angle x = 35^{\circ}$

11. 다음 그림의 사각형 ABCD 는 평행사변형이다. $\angle x - \angle y$ 의 값을 구하여라.

35° x 65° B C

➢ 정답: 65°

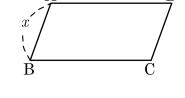
▶ 답:

 $\overline{
m AB}\,/\!/\,\overline{
m CD}$ 이므로 $\angle x=\angle y+65^\circ$ 이다.

해설

따라서 ∠x - ∠y = 65° 이다.

12. 다음 그림에서 $\overline{\rm AD}=2\overline{\rm AB}$ 이고, 그 둘레의 길이가 24 일 때, 사각형 ABCD 가 평행사변형이 되도록 하는 x 의 길이를 구하여라.

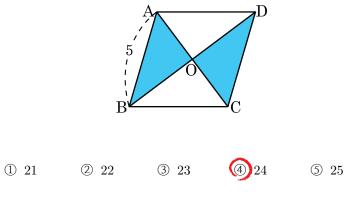


 답:

 ▷ 정답: 4

 $\overline{\mathrm{AB}} + \overline{\mathrm{BC}} = 12$ 이므로 $3\overline{\mathrm{AB}} = 12$ 가 되어 x = 4 이다.

13. 다음 평행사변형 ABCD에서 두 대각선의 길이의 합이 14일 때, 어두 운 부분의 둘레의 길이는?

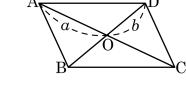


해설

 $\overline{\mathrm{AO}} + \overline{\mathrm{CO}} = \overline{\mathrm{AC}}, \ \overline{\mathrm{BO}} + \overline{\mathrm{OD}} = \overline{\mathrm{BD}}$ 이므로

어두운 부분의 둘레는 $2\overline{AB} + \overline{AC} + \overline{BD} = 10 + 14 = 24$ 이다.

14. 다음 $\square ABCD$ 에서 두 대각선의 길이의 합은 20cm이다. 이 사각형이 평행사변형이 되기 위해서 a+b의 값이 얼마여야 하는지 구하여라.



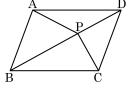
 $\underline{\mathrm{cm}}$

▷ 정답: 10<u>cm</u>

▶ 답:

두 대각선이 서로 다른 것을 이등분하면 평행사변형이므로 2(a+b)=20에서 $a+b=\frac{20}{2}=10\,\mathrm{cm}$ 이다.

15. 다음 그림과 같이 평행사변형 ABCD 의 내 부에 한 점 P 를 잡을 때, $\triangle ABP = 32cm^2$, △BCP = 28cm², △ADP = 24cm² 이다. △CDP 의 넓이를 구하여라.



▷ 정답: 20 cm²

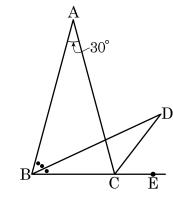
점 P 를 지나고 $\overline{\mathrm{AD}}$ 와 $\overline{\mathrm{AB}}$ 에 평행한 선분을 그으면 $\Delta\mathrm{ABP}$ + $\triangle CDP = \triangle APD + \triangle BCP$ 이므로

▶ 답:

 $\triangle CDP = 24 + 28 - 32 = 20 \text{ (cm}^2)$

 $\underline{\mathrm{cm}^2}$

16. 이등변삼각형 ABC 에서 $\angle B$ 의 삼등분선과 $\angle C$ 의 외각의 이등분선의 교점을 D 라 할 때, ∠BDC 의 크기는?



① 25°

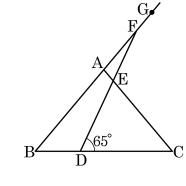
② 27.5°

③ 30° ④ 32.5° ⑤ 35°

 $\triangle ABC$ 에서 $\angle B=\angle C=(180^{\circ}-30^{\circ})\div 2=75^{\circ}$ 이므로 $\angle DBC=$

 $75^{\circ} \div 3 = 25^{\circ}$ 그리고 $\angle ACE = 180^{\circ} - 75^{\circ} = 105^{\circ}$, $\angle ACD = 105^{\circ} \div 2 = 52.5^{\circ}$ 따라서 ∠BDC = 180° - (25° + 75° + 52.5°) = 27.5°

17. 다음 그림에서 $\overline{AB}=\overline{AC},\ \overline{CD}=\overline{CE}$ 이다. $\angle EDC=65^\circ$ 일 때, ∠EFG 의 크기는?



 $3 \ 162^\circ$

4165°

⑤ 168°

 $\overline{\mathrm{CD}} = \overline{\mathrm{CE}}, \ \angle \mathrm{ECD} = 180^{\circ} - 65^{\circ} \times 2 = 50^{\circ}$

① 155°

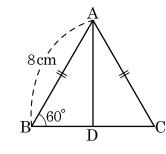
해설

 $\overline{AB} = \overline{AC}$, $\angle B = \angle C = 50^{\circ}$ $\therefore \angle EFG = \angle B + \angle BDE = 50^{\circ} + (180^{\circ} - 65^{\circ}) = 165^{\circ}$

② 158°

18. 다음 그림에서 $\overline{AB}=\overline{AC}=8\mathrm{cm}$ 이고, 점 A에서 내린 수선과 \overline{BC} 와의 교점을 D라 하자.

 $\angle ABC = 60\,^{\circ}$ 일 때, \overline{BD} 의 길이는?



 \bigcirc 2cm

② 3cm

3 4cm

④ 5cm

⑤ 6cm

해설

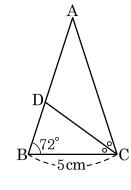
 $\triangle ABC$ 는 $\overline{AB} = \overline{AC} = 8$ cm 인 이등변삼각형이므로 $\angle ABC = \angle ACB = 60^{\circ}$ 따라서 $\angle BAC = 60$ ° 이므로

△ABC는 정삼각형이다.

 $\overline{\mathrm{AD}}$ 는 밑변 $\overline{\mathrm{BC}}$ 를 수직이등분하므로

 $\overline{BD} = \frac{1}{2} \times 8 = 4(cm)$

19. 다음 그림에서 $\triangle ABC$ 는 $\angle B=\angle C$ 인 이등변삼각형이다. $\angle C$ 의 이등분선이 \overline{AB} 와 만나는 점을 D 라 할 때, \overline{AD} 의 길이는?



① 3cm

② 4cm

③5cm

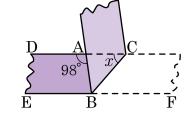
④ 6cm

⑤ 7cm

 $\angle B = \angle C = 72$ ° 이코 $\angle BCD = \angle ACD = 36$ ° 이므로, $\angle A = 36$ °

이다. 따라서 $\triangle ABC$, $\triangle ADC$ 는 두 내각의 크기가 같으므로 이등변삼각형이다. 따라서 $\overline{BC}=\overline{DC}=\overline{AD}=5\,\mathrm{cm}$ 이다.

 ${f 20}$. 다음 그림과 같이 폭이 일정한 종이테이프를 접을 때, $\angle x$ 의 크기는?



① 45° ② 46° ③ 47° ④ 48°

종이 테이프를 접으면 $\angle ABC = \angle FBC$ 이고

 $\angle CBF = \angle BCA = \angle x$ (엇각) $\therefore \angle ABC = \angle x$

 $\angle \mathrm{DAB} = \angle \mathrm{ABF} = 98\,^{\circ}$

 $\therefore \ \angle x = \frac{98^{\circ}}{2} = 49^{\circ}$

21. 다음 그림에서 직각이등변삼각형 ABC 의 l D 꼭짓점 A 를 지나는 직선 l 이 있다. B 와 ${f C}$ 에서 직선 ${\it l}$ 위에 내린 수선의 발을 각각 D, E 라 하면, $\overline{BD}=5, \overline{DE}=8$ 일 때, \overline{CE} 의 길이는?

③33 ④ 4 ⑤ 5 ① 1 ② 2

 \triangle ADB 와 \triangle AEC 에서 $\angle ADB = \angle AEC = 90^{\circ} \cdots \bigcirc$

해설

 $\overline{AB} = \overline{AC} \cdots \bigcirc$

 $\angle DAB = \angle ACE \; (\therefore \angle DAB + \angle EAC = 90\,^{\circ} \cdots \textcircled{\textcircled{e}})$

 \bigcirc , \bigcirc , \bigcirc 에 의해 $\triangle ADB \equiv \triangle AEC$ 이므로 $\overline{\text{CE}}$ 의 길이는 $\overline{\text{DE}}$ – $\overline{\text{BD}}$ = 3이 성립한다.

직 각 삼 각 형 22. ABC 에 서 $\overline{AC} =$ $\overline{\mathrm{AD}}$, $\overline{\mathrm{AB}} \bot \overline{\mathrm{DE}}$ 이다. $\overline{\rm AB}=13{\rm cm},\;\overline{\rm BC}=12{\rm cm},\;\overline{\rm AC}=5{\rm cm}$ 일 때, 삼각형 BED 의 둘레의 길이 는?

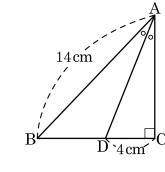
⑤ 20cm \bigcirc 13cm 4 18cm

 \bigcirc 12cm

해설

 \triangle ACE = \triangle ADE(RHS 합동) 이므로 $\overline{\mathrm{DE}} = \overline{\mathrm{EC}}, \ \overline{\mathrm{AD}} = \overline{\mathrm{AC}} \quad \therefore \overline{\mathrm{BD}} = 8\mathrm{cm}$ $\Delta \mathrm{BDE}$ 에서 $\overline{\mathrm{DE}} + \overline{\mathrm{BE}} = \overline{\mathrm{EC}} + \overline{\mathrm{BE}} = \overline{\mathrm{BC}} = 12\mathrm{cm}$ 이므로 $\Delta \mathrm{BDE}$ 의 둘레의 길이= $8+12=20(\,\mathrm{cm})$

23. 다음 그림과 같이 $\angle C=90^\circ$ 인 직각삼각형 ABC 에서 $\angle A$ 의 이등분선이 \overline{BC} 와 만나는 점을 D 라고 한다. $\overline{AB}=14\mathrm{cm}$, $\overline{DC}=4\mathrm{cm}$ 일 때, $\triangle ABD$ 의 넓이를 구하면?



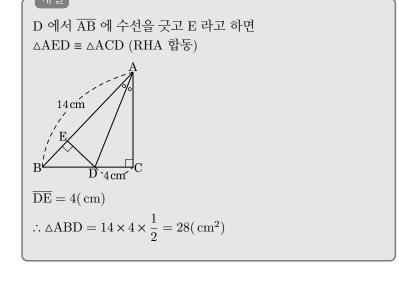
 $4 26 \text{cm}^2$

 $\textcircled{1} \ \ 20 \mathrm{cm}^2$

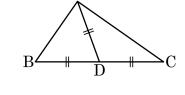
 \bigcirc 28cm²

 $22\mathrm{cm}^2$

- $3 24 \text{cm}^2$
- 0 200



24. 다음 그림과 같은 $\triangle ABC$ 에서 $\overline{AD} = \overline{BD} = \overline{CD}$ 일 때, $\triangle ABC$ 가 될 수 <u>없는</u> 삼각형의 종류는 무엇인가?



③ 직각삼각형

⑤ 정답 없음

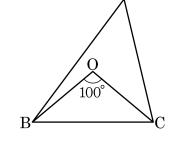
① 이등변삼각형

② 정삼각형 ④ 직각이등변삼각형

 $\overline{AD} = \overline{BD} = \overline{CD}$ 이므로 점 D 는 $\triangle ABC$ 의 외심이고 변의

중점에 있으므로 $\overline{\mathrm{BC}}$ 가 빗변인 직각삼각형이다. 이때, $\overline{\mathrm{AB}}=\overline{\mathrm{AC}}$ 인 경우도 가능하므로 직각이등변삼각형이 될 수 있지만, 세 변이 모두 같은 정삼각형은 될 수 없다.

25. 다음 그림에서 점 O 는 \triangle ABC 의 외심이다. \angle BOC = 100° 일 때, \angle A 의 크기를 구하여라.

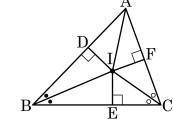


▷ 정답: 50°

▶ 답:

 $\angle A = \frac{1}{2} \angle BOC = \frac{1}{2} \times 100^{\circ} = 50^{\circ}$

26. 다음은 '삼각형 ABC의 세 내각의 이등분선은 한 점에서 만난다'를 나타내는 과정이다. ⑦ ~ @ 중 잘못된 것은?



∠B, ∠C의 이등분선의 교점을 I라 하면
i) BI는 ∠B의 이등분선이므로
ΔBDI ≡ ΔBEI ∴ ID = (③)
ii) CI는 ∠C의 이등분선이므로 ΔCEI ≡ ΔCFI ∴ IE =
(⑤)
iii) ID = (⑤) = (⑥)
iv) ID = IF이므로 ΔADI ≡ (⑥)
∴ ∠DAI = (⑧)
마라서 AI는 ∠A의 (⑩)이다.
마라서 ΔABC의 세 내각의 이등분선은 한 점에서 만난다.

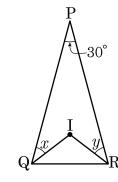
④ @: ∠FAI ⑤ @: 이등분선

③ (□ : △BDI

ΔIBE ≡ ΔIBD(RHA 합동) 이므로 ID와 대응변인 IE의 길이가

해설

같고, $\Delta ICE \equiv \Delta ICF(RHA \ \text{합동})$ 이므로 \overline{IE} 와 대응변인 \overline{IF} 의 길이가 같다. 그러므로, $\overline{IE} = \overline{IF}$ 이므로 ΔADI 와 ΔAFI 에서 $\angle ADI = \angle AFI = 90\,^{\circ}$, \overline{AI} 는 공통 변, $\overline{ID} = \overline{IF}$ 이므로 $\Delta ADI \equiv \Delta AFI(RHS \ \text{합동})$ **27.** 다음 그림의 점 I는 삼각형 PQR의 내심이다. \angle P = 30 °일 때, x+y의 값을 구하면?



① 60° ② 65° ③ 70°

⑤ 80°

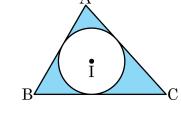
점 I가 $\triangle PQR$ 의 내심일 때, $\angle QIR = 90 \degree + \frac{1}{2} \angle P$ 이다. $\angle \mathrm{QIR} = 90\,^{\circ} + \frac{1}{2} \angle \mathrm{P} = 90\,^{\circ} + \frac{1}{2} \times 30\,^{\circ} = 105\,^{\circ}$ 이다.

또, 점 I가 삼각형의 세 내각의 이등분선의 교점이므로

 $\angle x = \angle PQI = \angle IQR$, $\angle y = \angle PRI = \angle IRQ$ 이다. 따라서 $\angle x + \angle y = \angle \mathrm{IQR} + \angle \mathrm{IRQ}$ 이고, 삼각형 내각의 합은 180°

이므로 $\angle x + \angle y = \angle \mathrm{IQR} + \angle \mathrm{IRQ} = 180\,^{\circ} - \angle \mathrm{QIR} = 180\,^{\circ} - 105\,^{\circ} = 75\,^{\circ}$

28. 다음 그림에서 원 I 는 \triangle ABC 의 내접원이다. 원 I 의 둘레의 길이가 6π , $\triangle {
m ABC}$ 의 둘레의 길이가 32 일 때, 색칠한 부분의 넓이는?



(4) $42 - 6\pi$ (5) $52 - 9\pi$

(1) $48 - 9\pi$ (2) $9\pi - 24$

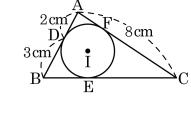
 $324 - 6\pi$

원 I 의 둘레의 길이가 6π 이므로 반지름의 길이 r=3 이다. 점 I 가 $\triangle ABC$ 의 내심일 때, $(\triangle ABC$ 의 넓이) $=\frac{1}{2} \times r \times \triangle ABC$ 의 둘레 $=\frac{1}{2} \times 3 \times 32 = 48$

따라서 색칠한 부분의 넓이는 (ΔABC 의 넓이) - (원 I 의 넓

이) = $48 - 9\pi$ 이다.

29. 다음 그림에서 점 I 는 $\triangle ABC$ 의 내심이고, 세 점 D, E, F 는 각각 내접 원과 세 변 AB, BC, CA 의 점점이다. $\overline{AD}=2cm, \overline{BD}=3cm, \overline{AC}=8cm$ 일 때, \overline{BC} 의 길이는?



① 6cm

② 7cm

③ 8cm

49cm

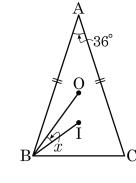
⑤ 10cm

점 I 가 삼각형의 내심이므로 $\overline{\mathrm{AD}}=\overline{\mathrm{AF}},\overline{\mathrm{BE}}=\overline{\mathrm{BD}},\overline{\mathrm{CE}}=\overline{\mathrm{CF}}$

지D = \overline{AF} = 2cm, \overline{BE} = \overline{BD} = 3cm, \overline{CE} = \overline{CF} 이므로 \overline{CF} = 6cm = \overline{CE} 이다.

 $\overline{BC} = \overline{CE}$ 이다. 따라서 $\overline{BC} = \overline{BE} + \overline{EC} = 3 + 6 = 9(cm)$ 이다.

30. 다음 그림에서 점 I 와 점 O 는 $\overline{AB} = \overline{AC}$ 인 이등변삼각형의 내심과 외심일 때 $\angle x$ 의 크기는?



① 14°

② 18°

 $3 20^{\circ}$ $4 22^{\circ}$

⑤ 24°

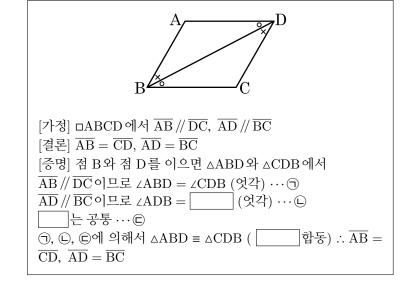
해설

 $\triangle ABC$ 의 외심이 점 O 일 때, $\frac{1}{2} \angle BOC = \angle A$ 이므로 $\angle A = 36^\circ$, ∠BOC = 72° 이다. $\triangle ABC$ 의 내심이 점 I 일 때, $\frac{1}{2} \angle A + 90^\circ = \angle BIC$ 이므로 $\angle BIC =$

 $\frac{1}{2} \times 36^{\circ} + 90^{\circ} = 108^{\circ}$ 이다. 2 $\triangle OBC$ 도 이등변삼각형이므로 $\angle OBC = 54^\circ$ 이다. 또, $\angle IBC = \frac{1}{2} \angle ABC = \frac{1}{2} \times 72^\circ = 36^\circ$ 이다. 따라서 $\angle OBI =$

 $\angle {\rm OBC}$ — $\angle {\rm IBC} = 54^{\circ}$ — $36^{\circ} = 18^{\circ}$ 이다.

31. 다음은 '평행사변형에서 두 쌍의 대변의 길이는 각각 같다.' 를 증명한 것이다. □ 안에 들어갈 것을 차례대로 나열하면?



① \angle CDB, \overline{BC} , SSS

3 $\angle BCD$, \overline{BC} , ASA 4 $\angle CDB$, \overline{BD} , ASA

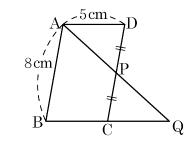
 \bigcirc \angle CDB, \overline{BD} , SSS

⑤∠DBC, DB, ASA

 \triangle ABD와 \triangle CDB에서 $\overline{AB} /\!/ \overline{DC}$ 이므로 $\angle ABD = \angle CDB$ (엇각),

해설

 $\overline{\mathrm{AD}} /\!/ \overline{\mathrm{BC}}$ 이므로 $\angle \mathrm{ADB} = \angle \mathrm{DBC}$ (엇각), $\overline{\mathrm{DB}}$ 는 공통 이므로 $\triangle\mathrm{ABD} = \triangle\mathrm{CDB} \ (\mathrm{ASA} \ \mathrm{\ddot{o}} \ \mathrm{S})$ 이다. **32.** 다음 그림의 평행사변형 ABCD 에서 점 $P \leftarrow \overline{CD}$ 의 중점이다. \overline{AP} 의 연장선과 \overline{BC} 의 연장선의 교점을 Q 라고 할 때, \overline{BQ} 의 길이를 구하여라.



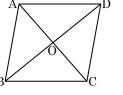
 $\underline{\mathrm{cm}}$

▷ 정답: 10<u>cm</u>

▶ 답:

해설

 $\triangle ADP \equiv \triangle QCP \text{ (ASA <math>\bar{Q}^1 - \bar{S}^1)}$ $\overline{AD} = \overline{CQ} = \overline{BC} = 5 \text{ (cm)}$ $\therefore \overline{BQ} = \overline{BC} + \overline{CQ} = 10 \text{ (cm)}$ 33. 다음 보기 중 그림과 같은 평행사변형 ABCD 가 정사각형이 되도록 하는 조건이 <u>아닌</u> 것을 모두 고르면?



- $\overline{\text{AC}} \perp \overline{\text{DB}} , \angle \text{ABC} = 90^{\circ}$
- ① ⑦, ② ② ⑤, ②
- ④ つ, ℂ, ቈ
- (5) (L), (E), (D)

(3)(L), (11)

해설

로 수직이등분하면 된다. 그리고 네 변의 길이가 같고 네 각의 크기가 모두 같으면 된다. 따라서 $\overline{AC} = \overline{DB}$, $\overline{AC} \bot \overline{DB}$ 또는 $\overline{AC} = \overline{DB}$, $\overline{AB} = \overline{AD}$ 또는 $\overline{AC} \bot \overline{DB}$, $\angle ABC = 90$ 이면 된다.

평행사변형이 정사각형이 되려면 두 대각선의 길이가 같고 서

34. 다음 보기의 사각형 중 등변사다리꼴이 <u>아닌</u> 것은?

-1 -1

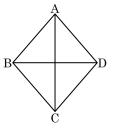
- 및 밀각의 크기가 같은 사다리꼴및 평행사변형
- © 0011
- ⓒ 직사각형
- ② 마름모
- ◎ 정사각형

해설

 $\textcircled{1} \ \textcircled{2} \ \textcircled{0}, \textcircled{0} \ \ \textcircled{3} \textcircled{0}, \textcircled{0} \ \ \textcircled{4} \ \textcircled{0}, \textcircled{0} \ \ \textcircled{5} \ \textcircled{0}, \textcircled{0}$

등변사다리꼴은 밑각의 크기가 같은 사다리꼴이다.

주어진 사각형 중에 밑각의 크기가 같지 않은 사각형은 평행사 변형과 마름모이다. 35. 다음 그림의 마름모 ABCD 의 각 변의 중점을 연결하여 만든 사각형의 성질이 <u>아닌</u> 것을 보 기에서 모두 골라라.



보기

마름모의 중점을 연결하여 만든 사각형은 직사각형이 된다.

- 두 대각선이 서로 수직으로 만난다.
- © 네 변의 길이가 모두 같다.

⊙ 두 대각선의 길이가 서로 같다.

- 예 각의 크기가 모두 직각이다.
- ◎ 두 쌍의 대변이 각각 평행하다.

▶ 답:

▶ 답:

▷ 정답: 心

▷ 정답 : □

두 대각선이 서로 수직으로 만나는 것과 네 변의 길이가 모두 같은 것은 마름모의 성질이다. **36.** 다음 그림에서 점 I 는 $\triangle ABC$ 의 내심이고 \overline{DE} $//\overline{BC}$ 일 때, $\triangle ABC$ 의 둘레의 길이를 구하여라.

 $\underline{\mathrm{cm}}$

▷ 정답: 31.5 cm

답:

△DBI 에서

해설

점 I 가 내심이므로 $\angle DBI = \angle IBC \cdots$ \bigcirc

 $\overline{\mathrm{DE}} \, / / \, \overline{\mathrm{BC}}$ 이므로 $\angle \mathrm{IBC} = \angle \mathrm{DIB} \, (rac{\circ}{2} rac{\circ}{2}) \, \cdots$ \square

⑤, ⓒ에서 $\angle DBI = \angle DIB$ 이므로 $\triangle DBI$ 는 이등변삼각형이다. $\overline{\rm DB}=\overline{\rm DI}$

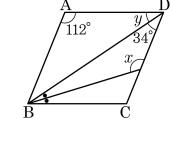
같은 방법으로 △EIC 도 이등변삼각형이다.

 $\overline{\mathrm{EC}} = \overline{\mathrm{EI}}$

 $\overline{AB} + \overline{BC} + \overline{AC} = \overline{AD} + \overline{AE} + \overline{DE} + \overline{BC}$ = 8 + 6 + 7 + 10.5 = 31.5 (cm)

따라서 △ABC 의 둘레의 길이는

37. 다음 사각형 ABCD 가 평행사변형이 되도록 $\angle x$, $\angle y$ 의 값을 구하여라.



▶ 답: **> 정답:** ∠x = 129_°

> 정답: ∠y = 34_^

답:

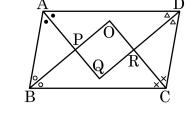
주어진 조건에 의해서 □ABCD 가 평행사변형이 되려면 112° +

 $\angle y + 34^\circ = 180^\circ$ 가 성립해야 한다. 따라서 ∠y = 34° 이다. $\overline{\mathrm{AD}}\,/\!/\,\overline{\mathrm{BC}}$ 이므로 ullet = $\frac{34^\circ}{2}$ = 17° 이다.

삼각형의 내각의 합은 180° 이므로 $\angle x=17^{\circ}+112^{\circ}=129^{\circ}$ 이다.

따라서 $\angle x = 129^\circ$, $\angle y = 34^\circ$ 이다.

 ${f 38.}$ 평행사변형 ABCD 의 네 각의 이등분선의 교점으로 만들어지는 사각 형 OPQR는 어떤 사각형인가?



① 평행사변형 ② 마름모 ④ 직사각형

해설

- ⑤ 정사각형
- ③ 등변사다리꼴

∠BAD + ∠ADC = 180°이므로

 $\angle QAD + \angle ADQ = 90^{\circ}$

 $\triangle AQD$ $\circ ||A| \angle AQD = (180 - 90)^{\circ} = 90^{\circ}$

마찬가지로 $\angle QRO = \angle ROP = \angle OPQ = 90^{\circ}$

:. 직사각형

39. 다음 그림과 같이 ∠ABC = 60° 인 마름모 ABCD 의 내부에 임의의 한 점 O 가 있다. 점 O 에서 마름모 ABCD 의 각 변 또는 그의 연 장선 위에 내린 수선의 발을 각각 P, Q, R, S 라 할 때, 다음 중 $\overline{\mathrm{OP}} + \overline{\mathrm{OQ}} + \overline{\mathrm{OR}} + \overline{\mathrm{OS}}$ 와 같은 것은?

 \bigcirc \overline{AC} ② BD

 $\textcircled{4} \ \overline{OB} + \overline{OD}$ \bigcirc $2\overline{AB}$

마름모 ABCD 의 한 변의 길이를 a 라 하면

 $\Box ABCD = \triangle OAB + \triangle OBC + \triangle OCD + \triangle OAD$ $= \frac{a}{2} \times \overline{OP} + \frac{a}{2} \times \overline{OQ} + \frac{a}{2} \times \overline{OR} + \frac{a}{2} \times \overline{OS}$

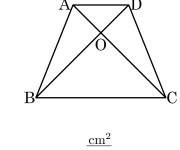
 $= \frac{a}{2} (\overline{OP} + \overline{OQ} + \overline{OR} + \overline{OS}) \cdots \bigcirc$

또한 \overline{AC} 를 그으면 $\overline{AB}=\overline{BC},\ \angle B=60$ 이므로 $\triangle ABC$ 는 정삼 각형이다. 즉, $\overline{\mathrm{AC}}=a$ 이므로

 $\Box \mathbf{A}\mathbf{B}\mathbf{C}\mathbf{D} = \frac{1}{2} \times \overline{\mathbf{A}\mathbf{C}} \times \overline{\mathbf{B}\mathbf{D}} = \frac{a}{2} \times \overline{\mathbf{B}\mathbf{D}} \cdots \ \bigcirc$

 $\textcircled{\scriptsize 1}, \textcircled{\scriptsize O} \ \ \, | \ \ \, | \frac{a}{2}(\overline{\rm OP} + \overline{\rm OQ} + \overline{\rm OR} + \overline{\rm OS}) = \frac{a}{2} \times \overline{\rm BD} \ \, \therefore \ \ \, \overline{\rm OP} + \overline{\rm OQ} +$ $\overline{\mathrm{OR}} + \overline{\mathrm{OS}} = \overline{\mathrm{BD}}$

40. 다음 그림과 같은 등변사다리꼴 ABCD에서 $\triangle AOD = 9\,\mathrm{cm}^2$ 이다. $\overline{AO}:\overline{OC}=3:7$ 일 때, $\Box ABCD$ 의 넓이를 구하여라.



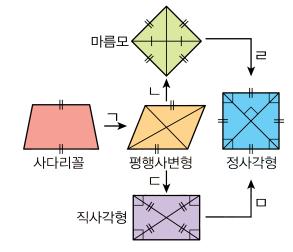
▷ 정답: 100<u>cm²</u>

▶ 답:

 $\triangle DOC = \frac{7}{3} \times 9 = 21 \text{ (cm}^2\text{)}$ $\triangle OAB = \triangle ODC$ 이므로 $\triangle OBC = \frac{7}{3} \times 21 = 49 \text{ (cm}^2\text{)}$

 $\therefore \Box ABCD = 9 + 21 \times 2 + 49 = 100 \text{ (cm}^2\text{)}$

41. 다음 그림은 사각형들 사이의 포함 관계를 나타낸 것이다. ¬~ㅁ 중각 도형이 되기 위한 조건으로 옳지 <u>않은</u> 것은?



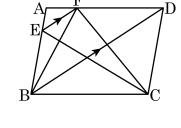
② ㄴ. 두 대각선이 직교한다.

① ㄱ. 다른 한 쌍의 대변도 평행하다.

- ③ ㄷ. 이웃한 두 변의 길이가 같다.
- ④ ㄹ. 한 내각의 크기가 90°이다.
- ⑤ ㅁ. 이웃한 두 변의 길이가 같다.

평행사변형이 직사각형이 되려면 한 내각의 크기가 90°이거나 두 대각선의 길이가 같으면 된다.

42. 다음 그림의 평행사변형 ABCD 에서 $\overline{\mathrm{BD}}//\overline{\mathrm{EF}}$ 일 때, 넓이가 다른 것을 골라라.

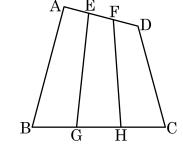


▷ 정답: ⑩

 $\triangle EBD = \triangle EBC$, $\triangle EBD = \triangle FDB = \triangle CFD$

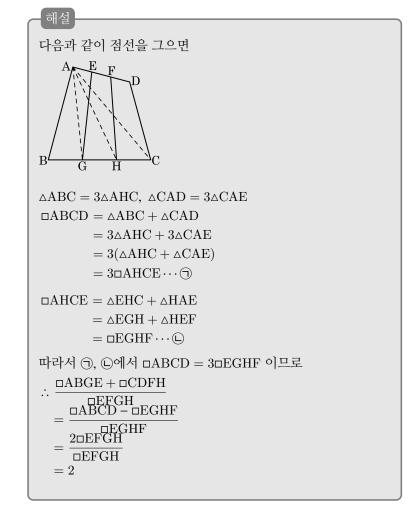
 $\overline{\mathrm{BD}}\,/\!/\,\overline{\mathrm{EF}}$ 임을 이용해야 한다.

43. 다음 그림에서 \overline{AE} = \overline{EF} = \overline{FD} , \overline{BG} = \overline{GH} = \overline{HC} 일 때, $\frac{\square ABGE + \square CDFH}{\square EFHG}$ 의 값을 구하여라.

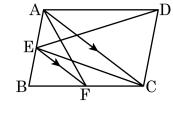


▷ 정답: 2

▶ 답:



44. 다음 그림의 평행사변형 ABCD에서 \overline{AC} $/\!/\!/\, \overline{EF}$ 이고 ΔAED 의 넓이가 $20 \mathrm{cm}^2$ 일 때, ΔACF 의 넓이는?

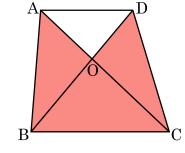


- ① 16cm² ④ 22cm²
- ② 18cm^2 ③ 24cm^2
- $320 \mathrm{cm}^2$

 $\overline{AB} / / \overline{DC}$ 이므로 밑변과 높이가 같고, $\triangle AED = \triangle ACE$ 이다.

 $\overline{
m AC}$ $/\!\!/ \, \overline{
m EF}$ 이므로 밑변과 높이가 같고, $\Delta ACF = \Delta ACE$ 이다. $\therefore \ \Delta ACF = 20 ({
m cm}^2)$

45. 다음 그림과 같이 $\overline{\mathrm{AD}}//\overline{\mathrm{BC}}$ 인 사다리꼴 ABCD에서 \triangle ABD 의 넓이가 90 일 때, 색칠한 부분의 넓이를 구하여라. (단, $3\overline{\mathrm{DO}} = 2\overline{\mathrm{BO}}$)



▶ 답: ▷ 정답: 189

△AOD : △AOB = 2 : 3 이므로

 $\triangle AOB = \frac{3}{5} \times \triangle ABD = 54$

이때 $\triangle ABD = \triangle ACD$ 이므로

 $\triangle AOB = \triangle COD = 54$ 또, $\triangle COD : \triangle BCO = 2 : 3$ 이므로

 $54: \triangle BCO = 2:3 \quad \therefore \triangle BCO = 81$ (색칠한부분의 넓이) = 54 + 54 + 81 = 189

46. 다음 그림과 같은 평행사변형 ABCD 에서 ∠ABC 의 이등분선과 ĀD, CD 의 연장선과 의 교점을 각각 P, Q 라고 한다. ĀB = 11cm, 11cm QD = 5cm 일 때, BC 의 길이를 구하여라. B

A P 5cm

답:

 $\underline{\mathrm{cm}}$

▷ 정답: 16 cm

-해설 ∠QPD = ∠PBC (동위각)

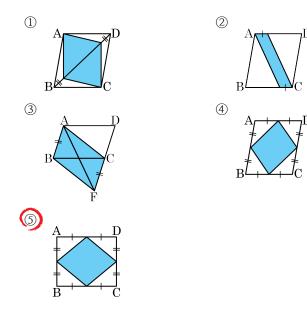
∠ABP = ∠PQD (엇각) △DQP 는 이등변삼각형이므로

 ΔABP 도 이등변삼각형이므로 $\overline{AB} = \overline{AP} = 11 \text{ (cm)}$

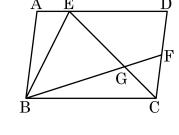
 $\overline{\mathrm{DQ}} = \overline{\mathrm{DP}} = 5 \text{ (cm)}$

 $\therefore \overline{BC} = \overline{AD} = 11 + 5 = 16 \text{ (cm)}$

47. □ABCD 가 평행사변형일 때, 다음 색칠된 사각형 중 종류가 <u>다른</u> 하나는?

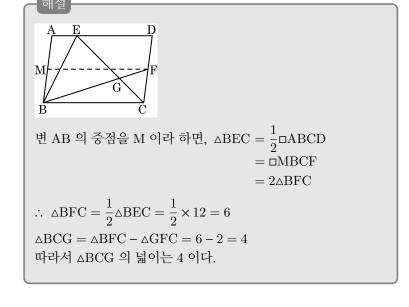


①,②,③,④=> 평행사변형 ⑤=> 마름모 48. 다음 그림의 평행사변형 ABCD 에서 $\Delta BEC = 12, \, \Delta GFC = 2$ 이고 점 F 는 변 CD 의 중점일 때, ΔBCG 의 넓이를 구하여라.

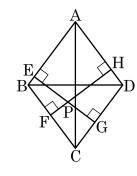


답:

▷ 정답: 4



49. 넓이가 $216 \mathrm{cm}^2$ 인 마름모 ABCD 가 있다. $\square ABCD$ 의 내부의 한 점 P 에서 네 변에 내린 수선의 길이를 각각 l_1 , l_2 , l_3 , l_4 라 하고, $l_1 + l_2 + l_3 + l_4 = \frac{432}{15}$ (cm) 일 때, 마름모의 한 변의 길이를 구하여라.

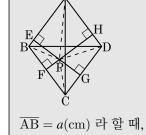


답:

 $\underline{\mathrm{cm}}$

▷ 정답: 15<u>cm</u>

점 P 와 네 꼭짓점 A, B, C, D 를 연결하면 다음과 같이 삼각형 4 개가 만들어진다.



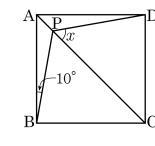
 $= \triangle PAB + \triangle PBC + \triangle PCD + \triangle PDA$ 이므로

 $\frac{1}{2} \times a \times (l_1 + l_2 + l_3 + l_4) = 216$ $\frac{1}{2} \times a \times \frac{432}{15} = 216$

$$\frac{1}{2} \times a \times \frac{432}{15} = 216$$

$$\therefore a = 15(\text{cm})$$

50. 다음 그림에서 $\square ABCD$ 는 정사각형이고 대각선 AC 위에 한 점 P 를 잡았다. $\angle ABP = 10^{\circ}$ 일 때, $\angle x$ 의 크기를 구하여라.



 360° 465° 570°

△ADP 와 △ABP 에서 $\overline{\mathrm{AB}} = \overline{\mathrm{AD}}$, $\overline{\mathrm{AP}}$ 는 공통,

① 50°

해설

∠BAP = ∠DAP = 45° 이므로,

 $\triangle ABP \equiv \triangle ADP (SAS 합동)$

② 55°

따라서 ∠ADP = 10° 이고, ∠CDP = 80° \triangle CDP 에서 \angle CDP = 80°, \angle DCP = 45°

 $\therefore \angle x = 180^{\circ} - (80^{\circ} + 45^{\circ}) = 55^{\circ}$