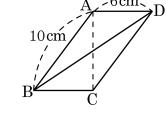
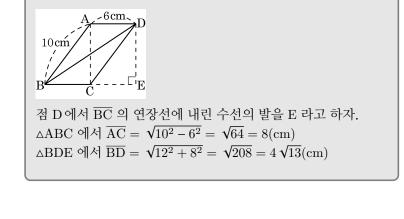
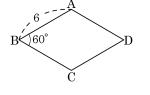
- 1. 다음 그림은 한 변의 길이가 5 인 정사각형 두 개를 이어 붙인 것이다. *x* 의 길이로 알맞은 것은?
 - ① $2\sqrt{5}$ ④ $5\sqrt{5}$


 - ② $3\sqrt{5}$ ③ $4\sqrt{5}$

(4) 5 V

해설 $x = \sqrt{10^2 + 5^2} = \sqrt{100 + 25} = \sqrt{125} = 5\sqrt{5}$

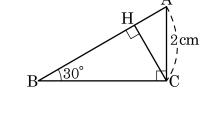

2. 다음과 같은 평행사변형 ABCD 에서 $\overline{AB}=10\mathrm{cm}$, $\overline{AD}=6\mathrm{cm}$ 일 때, \overline{BD} 의 길이를 구하여라.


 $\underline{\mathrm{cm}}$

정답: 4√13 cm

답:

3. 다음 그림과 같이 한 변의 길이가 6cm 인 마름모의 넓이를 구하여라.


 답:
 cm²

 > 정답:
 18√3 cm²

ΔABC 는 한 변의 길이가 6cm 인 정삼각형이므로

넓이는 $\frac{\sqrt{3}}{4} \times 6^2 = 9\sqrt{3} (\mathrm{cm}^2)$ 이다. 따라서, 마름모의 넓이는 $2 \times 9\sqrt{3} = 18\sqrt{3} (\mathrm{cm}^2)$ 이다.

다음 그림에서 $_{
m CC}=90\,^{\circ}$ 인 직각삼각형 $_{
m ABC}$ 에서 $_{
m \overline{CH}}$ $_{
m \overline{AB}}$ 이고 4. $\angle \mathrm{B} = 30\,^{\circ}$ 일 때 $\overline{\mathrm{CH}}$ 의 길이을 구하여라.

 $\underline{\mathrm{cm}}$

▷ 정답: √3 cm

삼각형 ABC에서 $\overline{AB}:\overline{BC}:\overline{AC}=2:\sqrt{3}:1$ $\overline{AB}=4(\,\mathrm{cm}),\,\overline{BC}=2\,\sqrt{3}(\,\mathrm{cm})$

삼각형 ABC의 넓이는 $\frac{1}{2} \times \overline{BC} \times \overline{AC} = \frac{1}{2} \times \overline{AB} \times \overline{CH}$ 이므로 $\frac{1}{2} \times 2\sqrt{3} \times 2 = \frac{1}{2} \times 4 \times \overline{CH}$

 $\overline{CH}=\sqrt{3}(\,\mathrm{cm})$

▶ 답:

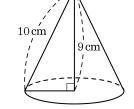
5. 두 점 A(-4, 2), B(x, 4) 사이의 거리가 $2\sqrt{5}$ 일 때, x 의 값을 구하여 라.

▶ 답:

▶ 답:

➢ 정답: x = 0 **> 정답:** *x* = −8

해설


A(-4, 2), B(x, 4) 에서 $\overline{AB} = \sqrt{(x+4)^2 + (4-2)^2} = \sqrt{(x+4)^2 + 4} = 2\sqrt{5}$ $(x+4)^2 + 4 = 20, (x+4)^2 = 16$ $x + 4 = \pm 4$

따라서 x = 0 또는 x = -8 이다.

- **6.** 세 모서리의 길이가 3 cm, 5 cm, 6 cm 인 직육면체의 대각선의 길이는?
 - ① $2\sqrt{15} \text{ cm}$ ④ $5\sqrt{2} \text{ cm}$
- ② $4\sqrt{15}$ cm
- $\sqrt{70}$ cm
- .
- ⑤ 9 cm


 $\sqrt{3^2 + 5^2 + 6^2} = \sqrt{70}$ (cm) 이다.

- 다음 그림과 같이 높이가 9cm 이고, 모선의 7. 길이가 10인 원뿔이 있다. 이 원뿔의 밑면의 넓이는?
 - ① $17\pi\,\mathrm{cm}^2$ $2 18\pi \,\mathrm{cm}^2$ $319\pi\,\mathrm{cm}^2$
- $40 \ 20\pi \, \text{cm}^2$

해설

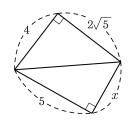
(밑면의 반지름) = $\sqrt{10^2 - 9^2} = \sqrt{19}$ (cm) (밑면의 넓이) = $\sqrt{19} \times \sqrt{19} \times \pi = 19\pi \text{(cm}^2\text{)}$ 8. 다음 그림의 직각삼각형에서 빗변 $\overline{\mathrm{AB}}$ 의 길이를 구하면?

 $\overline{AB} = x = \sqrt{3^2 + 2^2} = \sqrt{13}$

9. 다음 그림에서 $\angle C=90\,^\circ$, $\overline{BM}=\overline{CM}$, $\overline{AB}=25\,\mathrm{cm}\;,\;\overline{AC}=7\,\mathrm{cm}\;\mathrm{이다.}\;\mathrm{이때},$ $\overline{AM}\;\mathrm{의}\;\mathrm{길이는}?$

- 25 cm 7 cm
- ① $\sqrt{190} \text{ cm}$ ② ④ $\sqrt{194} \text{ cm}$ ⑤
 - ② $\sqrt{191} \, \text{cm}$ ③ $\sqrt{199} \, \text{cm}$
- $\sqrt{3}\sqrt{193}\,\mathrm{cm}$

해설


 $\triangle ABC$ 에서 $\overline{BC}^2 = 25^2 - 7^2 = 576$ $\therefore \overline{BC} = 24$

 $\therefore BC = 24$ $\overline{MC} = \frac{1}{2}\overline{BC} : \overline{MC} = 12(\text{cm})$

 $\triangle AMC$ 에서 $\overline{AM}^2 = 7^2 + 12^2 = 193$

 $\therefore \overline{AM} = \sqrt{193} (cm)$

10. 다음 그림에서 x 의 길이는 ?

① $\sqrt{10}$ ② $\sqrt{11}$ ③ $2\sqrt{3}$ ④ $\sqrt{13}$ ⑤ $\sqrt{14}$

피타고라스 정리를 적용하면 두 직각삼각형의 공통변의 길이는

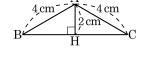
따라서 $x = \sqrt{36 - 25} = \sqrt{11}$

11. 대각선의 길이가 $6\sqrt{2}$ 인 정사각형의 넓이는?

① 12 ② 18 ③ 24 **4**36 **5**42

피타고라스 정리를 적용하여 $(6\sqrt{2})^2 = x^2 + x^2$ $2x^2 = 72$ $x^2 = 36$ 그런데, *x* > 0 이므로 $x = \sqrt{36} = 6$

따라서 $6 \times 6 = 36$ 이다.


12. 한 변의 길이가 11 인 정삼각형의 높이는?

$$\frac{1}{3}$$

①
$$\frac{11\sqrt{3}}{3}$$
 ② $\frac{11\sqrt{3}}{4}$ ③ $\frac{11\sqrt{3}}{2}$ ④ $11\sqrt{3}$ ⑤ 11

해설 (정삼각형의 높이)=
$$\frac{\sqrt{3}}{2} \times 11 = \frac{11\sqrt{3}}{2}$$

 다음 그림의 AB=AC = 4 cm 인 이등변삼 각형 ABC 에서 AH⊥BC, AH = 2 cm 일 때, BC의 길이를 구하면?

① $5\sqrt{3}$ cm ④ $2\sqrt{3}$ cm $\overline{\rm BH} = \sqrt{4^2-2^2} = 2\sqrt{3} (\,\rm cm) \, \therefore \overline{\rm BC} = 4\sqrt{3} (\,\rm cm)$

 $3\sqrt{3}$ cm

해설

- 14. 다음 그림의 $\overline{AB} = 4$, $\angle B = 45$ °, $\angle C =$ $30\,^{\circ}$ 인 ΔABC 에서 꼭짓점 A 에서 \overline{BC} 에 내린 수선의 발을 H 라고 할 때, $\overline{\mathrm{BC}}$ 의 길이는?
- ① $4\sqrt{2}$ 4 $2\sqrt{2} + 2\sqrt{6}$
- ② $4\sqrt{6}$ ⑤ $8\sqrt{2}$
- $3 2\sqrt{2} + \frac{2\sqrt{6}}{3}$

해설

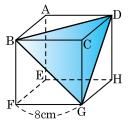
- $\begin{aligned} 1: \ \sqrt{2} &= \overline{BH}: 4, \ \overline{BH} = 2 \sqrt{2} = \overline{AH} \\ 1: \ \sqrt{3} &= 2 \sqrt{2}: \overline{CH}, \ \overline{CH} = 2 \sqrt{6} \end{aligned}$ $\therefore \overline{BC} = \overline{BH} + \overline{CH} = 2\sqrt{2} + 2\sqrt{6}$

15. 이차함수 $y = x^2 - 4x + 5$ 의 그래프가 y 축과 만나는 점과 원점 사이의 거리는?

① 1 ② 2 ③ 3 ④ 4

이차함수의 그래프가 y 축과 만나는 점은 x 좌표가 0 일 때이므로

해설


 $y = x^2 - 4x + 5$ 의 그래프가 y축과 만나는 점은 (0, 5)이다. 따라서 원점과의 거리는 5 이다.

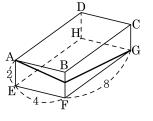
16. 어떤 정육면체의 대각선의 길이가 9 일 때, 이 정육면체의 한 모서리의 길이는?

① $2\sqrt{3}$ ② $3\sqrt{3}$ ③ $6\sqrt{3}$ ④ 6 ⑤ $2\sqrt{6}$

한 모서리의 길이가 a인 정육면체의 대각선의 길이는 $\sqrt{a^2+a^2+a^2}=\sqrt{3}a$ 이므로 $\sqrt{3}a=9$ 에서 $a=3\sqrt{3}$ 이다.

17. 다음 그림과 같은 정육면체를 세 꼭짓점 B, G, D를 지나는 평면으로 자를 때, △BGD 의 넓이를 구하여라.

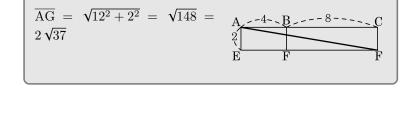
 ▷ 정답:
 32√3 cm²

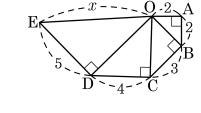

 $\underline{\mathrm{cm}^2}$

△BGD 는 한 변이 $8\sqrt{2}$ 인 정삼각형이므로

▶ 답:

(넓이) = $\frac{\sqrt{3}}{4} \times (8\sqrt{2})^2 = 32\sqrt{3} \text{(cm}^2)$


18. 다음 직육면체에서 꼭짓점 A 에서 모서리 BF를 거쳐 점 G 에 이르는 최단거리를 구하여라.


답:

➢ 정답: 2√37

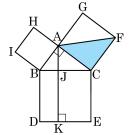
해설

19. 다음 그림 *x*의 값은?

해설

③ $\sqrt{59}$

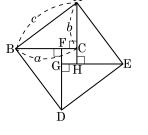
④ $\sqrt{61}$


⑤ $\sqrt{65}$

① $\sqrt{57}$

 $\overline{\mathrm{BO}} = 2\sqrt{2}, \overline{\mathrm{CO}} = \sqrt{9+8} = \sqrt{17}$ $\overline{\frac{DO}{OE}} = \sqrt{17 + 16} = \sqrt{33}$ $\overline{OE} = \sqrt{25 + 33} = \sqrt{58}$

 $\bigcirc \sqrt{58}$


20. 다음 그림과 같이 $\angle A = 90$ ° 인 직각삼각형 ABC 에서 세 변 \overline{AB} , \overline{BC} , \overline{CA} 를 각각 한 변으로 하는 정사각형을 그렸다. 다음 중 $\triangle ACF$ 와 넓이가 같은 것은 모두 몇 개인가?

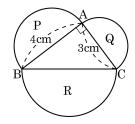
 $\triangle ACF = \triangle BCF = \frac{1}{2} \square CEKJ = \triangle ACE$

- **21.** 다음 그림은 직각삼각형 ABC와 합동인 삼각형을 붙여 만든 정사각형 ABDE이다. $\Box {\rm ABDE}$ 의 넓이가 $100\,{\rm cm}^2$ 이고 $a=8\,{\rm cm}$ 일 때, □FGHC의 넓이는 얼마인가?
 - $24 \, \mathrm{cm}^2$ $\bigcirc 3 \, \mathrm{cm}^2$ $\ \, 3\ \, 5\,\mathrm{cm}^2$
 - $\Im 7 \text{ cm}^2$ $46 \, \mathrm{cm}^2$

해설 $c^2 = 100 \,\mathrm{cm}^2, \, c = 10 \,\mathrm{cm}$

 $a^2 + b^2 = c^2$, $10^2 = b^2 + 8^2$, b = 6 (cm) $\overline{FC} = a - b = 8 - 6 = 2 \,\mathrm{cm}$ $\therefore \Box FGHC = 2^2 = 4 \text{ (cm}^2)$

 $\sqrt{6}$ cm


① $\sqrt{2}$ cm

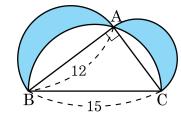
- ② $\sqrt{3}$ cm ③ $\sqrt{7}$ cm
- $3\sqrt{5}$ cm

 $\overline{AB}^{2} + \overline{CD}^{2} = \overline{AD}^{2} + \overline{BC}^{2}$ $100 + \overline{CD}^{2} = 81 + 25$ $\overline{CD}^{2} = 6 \quad \therefore \overline{CD} = \sqrt{6}(cm)$

23. 다음 그림과 같이 직각삼각형 ABC의 세 변을 지름으로 하는 반원의 넓이를 각각 P, Q, R 이라고 할 때, P + Q + R 을 구하여라.

▶ 답:

 $_{\rm cm^2}$


ightharpoonup 정답: $rac{25}{4}\pi$ $m cm^2$

 $\triangle ABC$ 에서 $\overline{BC} = \sqrt{3^2 + 4^2} = \sqrt{25} = 5 \text{(cm)}$ $P = \frac{1}{2}\pi 2^2 = 2\pi \text{(cm}^2)$, $Q = \frac{1}{2}\pi \left(\frac{3}{2}\right)^2 = \frac{9}{8}\pi \text{(cm}^2)$, $R = \frac{1}{2}\pi 2^2 = \frac{1}{2}\pi$

$$\frac{1}{2}\pi \left(\frac{5}{2}\right)^2 = \frac{25}{8}\pi (\text{cm}^2)$$

$$P + Q + R = \frac{25}{4}\pi(\text{cm}^2)$$

24. 다음 그림에서 색칠한 부분의 넓이는?

① 27 ② 54 ③ 81 ④ 100 ⑤ 108

색칠한 부분의 넓이는 큰 반원 안 직각삼각형의 넓이와 같다.

직각삼각형의 나머지 한 변이 9 이므로 그 넓이는 $\frac{1}{2} \times 12 \times 9 = 54$ 따라서 넓이는 54이다.

- ${f 25}$. 다음 그림은 $\overline{
 m AB}=\overline{
 m BC}=6\,{
 m cm}$ 인 직각이 등변삼각형의 종이를 $\overline{\mathrm{EF}}$ 를 접는 선으로 하여 점 A 가 \overline{BC} 의 중점 D 에 오도록 접은 것이다. △FDB 의 넓이를 구하면?

- $\overline{\mathrm{BF}}=x\,\mathrm{cm}$ 라고 두면 $\overline{\mathrm{AF}}=\overline{\mathrm{DF}}=(6-x)\,\mathrm{cm}$ 이고, $\overline{\mathrm{DB}}=6\div2=3(\,\mathrm{cm})$ 이다. $\Delta\mathrm{FBD}$ 는 직각삼각형이므로 $(6-x)^2=x^2+3^2$,
- $x=rac{9}{4}$ 이다. ΔFDB 의 넓이는 $rac{1}{2} imes 3 imes rac{9}{4}=rac{27}{8}(\,{
 m cm}^2)$ 이다.