다음은 이차방정식에 관한 설명이다. _____ 안에 알맞은 말을 써라.

방정식의 모든 항을 좌변으로 이항하여 정리한 식이 (이차식) = 0 의 모양으로 되는 식을 ____ 이라고 한다.

▶ 답:

1.

▷ 정답: 이차방정식

(이차식) = 0 의 형태를 이차방정식이라 한다.

해설

- **2.** 다음 이차방정식 중에서 x = 1을 해로 갖지 않는 것은?
 - ① $x^2 = 1$
- ② (x-1)(x+2) = 0
- $3x^2 x 2 = 0$

해설

- $3x^2 x 2 = 0$ 4 $x^2 2x + 1 = 0$

x=1을 각 이차방정식에 대입해 보면

③ $1-1-2 \neq 0$ 으로 성립하지 않는다.

3. $(x-2)^2 = 3$ 의 해가 $x = m \pm \sqrt{n}$ 일 때, m-n 의 값을 구하여라.

▶ 답:

▷ 정답: -1

 $(x-2)^2 = 3, x-2 = \pm \sqrt{3}$ $x = 2 \pm \sqrt{3}$ 이므로 m = 2, n = 3

 $\therefore m - n = 2 - 3 = -1$

- **4.** 이차방정식 $3(x+2)^2 = a$ 가 하나의 근을 갖도록 하는 상수 a 의 값을 구하여라.
 - ▶ 답:

> 정답: *a* = 0

 $(x+2)^2 = \frac{a}{3}$

해설

중근을 가질 때 (완전제곱식)= 0 의 꼴이므로 $\frac{a}{3}=0$

 $\therefore a = 0$

5. 이차방정식 $x^2+3x-1=0$ 의 해가 $\frac{A\pm\sqrt{B}}{2}$ 일 때, $A,\ B$ 의 값을 각각 구하여라. (단, A, B 는 유리수)

▶ 답:

▶ 답:

▷ 정답: A = -3 ▷ 정답: B = 13

 $x = \frac{-3 \pm \sqrt{3^2 - 4 \times 1 \times (-1)}}{2 \times 1} = \frac{-3 \pm \sqrt{13}}{2}$ $\therefore A = -3, B = 13$

6. 이차방정식 $x^2 - 5x + 6 = 0$ 의 두 근 중 작은 근이 $2x^2 - ax + 5a + 4 = 0$ 의 근일 때, a^2 의 값은?

① 9 ② 13 ③ 16 ④ 18 ⑤ 20

 $x^2 - 5x + 6 = 0$

해설

(x-3)(x-2) = 0

x = 3 또는 x = 2

x=2 가 $2x^2-ax+5a+4=0$ 의 근이므로 대입하면 $2(2^2) - 2a + 5a + 4 = 0$

3a = -12

a = -4

 $\therefore a^2 = (-4)^2 = 16$

7. 이차방정식 $x^2 - 10x = a$ 가 중근을 갖도록 a 의 값을 정하면?

해설

 $\bigcirc -25$ ② 25 ③ -100 ④ 100 ⑤ -10

 $x^{2} - 10x = a \rightarrow x^{2} - 10x - a = 0$ $\left(\frac{-10}{2}\right)^{2} = -a$ $\therefore a = -25$

- 8. 이차방정식 (x-1)(x-5)=4 를 $(x+A)^2=B$ 의 꼴로 나타낼 때, A,B 의 값은?
 - ① A = 3, B = 8③ A = 2, B = 4
- ②A = -3, B = 8
- ③ A = 2, B = 4⑤ A = 4, B = 6
- 해

(x-1)(x-5) = 4 $x^2 - 6x = 4 - 5$

 $\begin{vmatrix} x^2 - 6x + 9 = -1 + 9 \\ (x - 3)^2 = 8, A = -3, B = 8 \end{vmatrix}$

 $3x^2-6x+1=0$ 의 해를 구하면 $x=\frac{A\pm\sqrt{B}}{3}$ 이다. 이때, A+B 의 9. 값을 구하여라.

▶ 답:

▷ 정답: 9

$$3x^{2} - 6x + 1 = 0$$

$$3(x^{2} - 2x) = -1$$

$$3(x - 1)^{2} = 2$$

$$(x - 1)^{2} = \frac{2}{3}$$

$$x - 1 = \pm \sqrt{\frac{2}{3}}$$

$$\therefore x = \frac{3 \pm \sqrt{6}}{3}$$

$$A = 3, B = 6$$

$$\therefore A + B = 9$$

$$\therefore x = \frac{3\pm}{3}$$

$$A = 3, B =$$
 $A + B =$

- **10.** 다음 이차방정식 중 해가 없는 것은?

 - ① $x^2 6x 2 = 0$ ② $x^2 3x 4 = 0$
 - $3 2x^2 2x + 2 = 0 4 2x^2 4x + 2 = 0$

③ $D = (-2)^2 - 4 \times 2 \times 2 < 0$: 해가 없다.

11. 이차방정식 $x^2 + 3x + 1 - k = 0$ 이 서로 다른 두 근을 갖도록 하는 k의 값의 개수는?

-3, -2, -1, 0, 1, 3, 4

① 2 개 ② 3 개 ③ 4 개 ④ 5 개 ⑤ 7 개

 $D = 3^{2} - 4(1 - k) > 0$ $9 - 4 + 4k > 0, k > -\frac{5}{4}$

∴ k = -1, 0, 1, 3, 4∴ 5 7 \dagger

12. 이차방정식 $x^2 + ax + 4 = 0$ 의 한 근이 $3 - \sqrt{5}$ 일 때, 다른 한 근을 b라 하자. 이때, a + b 의 값은?

 $\bigcirc 3 + \sqrt{5}$ $\bigcirc 3 - \sqrt{5}$

- ① $3 \sqrt{5}$ ② $-3 \sqrt{5}$ ③ $3 + \sqrt{5}$

다른 한 근은 $b=3+\sqrt{5}$ 이므로

 $-a = (3 - \sqrt{5}) + (3 + \sqrt{5}) = 6$ $\therefore a = -6$

 $\therefore a+b=-3+\sqrt{5}$

13. 연속하는 두 자연수의 곱이 132 일 때, 두 수 중 작은 수는?

① 10 ② 11 ③ 12 ④ 13 ⑤ 14

연속하는 두 자연수를 x, x+1이라 하면

x(x+1) = 132 $x^2 + x - 132 = 0$

해설

(x+12)(x-11) = 0

x = -12 또는 x = 11x 는 자연수이므로 x = 11이다.

14. 다음 그림과 같은 정사각형 모양의 꽃밭이 있다. 꽃밭 사이에 폭이 $2 \, \mathrm{m}$ 가 되는 길을 $2 \, \mathrm{m}$ 만들었더니 길을 제외한 꽃밭의 넓이가 $45 \, \mathrm{m}^2$ 였다. 처음 꽃밭의 가로의 길이는?

① 3 m ④ 8 m ② 6 m ③ 9 m 3 7 m

해설 정사각형의 가로의 길이를 x m라고 하면

(x-4)x = 45 $\therefore x = 9(\because x > 0)$

(꽃밭의 넓이) = (x-4)x

15. 이차방정식 $ax^2 + bx + 3 = 0$ 의 한 근을 k 라고 할 때, $ak^2 + bk + 5$ 의 값을 구하여라.

답:

▷ 정답: 2

해설

 $ax^2+bx+3=0$ 의 한 근이 k 이므로 $ak^2+bk+3=0$, $ak^2+bk=-3$ 이므로

 $ak^2 + bk + 5 = -3 + 5 = 2$

- **16.** 이차방정식 $0.2x^2 0.3x 1 = 0$ 의 두 근 중에서 큰 근을 k 라고 할 때, k 보다 크지 않은 최대의 정수를 구하여라.
 - ▶ 답:

▷ 정답: 3

 $0.2x^2 - 0.3x - 1 = 0$ 의 양변에 10 을 곱하면 $2x^2 - 3x - 10 = 0$ $\therefore x = \frac{3 \pm \sqrt{89}}{4}$ 따라서 $k = \frac{3 + \sqrt{89}}{4}$ 이므로 최대 정수는 3 이다.

17. 이차방정식 $x^2+3x-1=0$ 의 두 근을 α , β 라 하고 $\alpha-1$, $\beta-1$ 을 두 근으로 하는 이차방정식을 $x^2 + mx + n = 0$ 이라 할 때, mn 을 구하여라.

▶ 답: ➢ 정답: 15

 $x^2+3x-1=0$ 의 두 근이 α , β 이므로 $\alpha+\beta=-3$, $\alpha\beta=-1$, α – 1 , β – 1 을 두 근으로 하는 이차방정식은

 $x^{2} - (\alpha + \beta - 2)x + (\alpha\beta - \alpha - \beta + 1) = 0$,

 $x^{2} - (-3 - 2)x + (-1 + 3 + 1) = 0,$

 $x^2 + 5x + 3 = 0 ,$ m=5 , n=3 ,

 $\therefore mn = 15$

- **18.** 이차방정식 $x^2 (2a + 3)x + a^2 + 3a = 0$ 의 한 근이 다른 한 근의 2 배 일 때, a 의 값은? (a 는 상수)

- ① 3 ② -3 ③ 6 ④ -3,6 ⑤ 3,-6

두 근을 각각 p, 2p 라고 하면, 근과 계수와의 관계에 의해 p+2p=2a+3 , $2p^2=a^2+3a\cdots$ \bigcirc $3p=2a+3, p=rac{2a+3}{3}$ 를 \bigcirc 에 대입하면

$$2 imes \left(\frac{2a+3}{3}\right)^2 = a^2+3a$$
 , $2(2a+3)^2 = 9a^2+27a$ 정리하면 $a^2+3a-18=0$, $(a+6)(a-3)=0$

 $\therefore a = -6, \ 3$

19. 이차방정식 $x^2 + ax + b = 0$ 의 해가 -3, 5 일 때, $ax^2 + bx + 5 = 0$ 의 두 근의 합을 구하여라.

답:

ightharpoonup 정답: $-\frac{15}{2}$

근과 계수의 관계로부터 $-a = -3 + 5, \ a = -2$

 $b = -3 \times 5 = -15$ $ax^2 + bx + 5 = 0$ 에 a = -2, b = -15 대입하면 $-2x^2 - 15x + 5 = 0$

따라서 두 근의 합은 $-\frac{(-15)}{-2} = -\frac{15}{2}$ 이다.

20. 어떤 정사각형의 가로의 길이를 $4 \, \mathrm{cm}$ 길게 하고, 세로의 길이를 $6 \, \mathrm{cm}$ 짧게 하여 직사각형을 만들었더니 그 넓이가 $39 \, \mathrm{cm}^2$ 가 되었다. 처음 정사각형의 넓이를 구하여라.

 답:
 cm²

 > 정답:
 81 cm²

정사각형의 한 변의 길이를 $x \, \mathrm{cm}$ 라고 하면, (x+4)(x-6) = 39이므로

 $x^{2} - 2x - 24 = 39$ $x^{2} - 2x - 63 = 0$

(x+7)(x-9) = 0

x = 9 (: x > 6) 따라서 처음 정사각형의 넓이는 $9 \times 9 = 81 \text{ (cm}^2)$ 이다.

- **21.** 이차방정식 $x^2 8x + 15 = 0$ 의 두 근을 a, b 라고 할 때, 다음 중 a+2,b+2 를 두 근으로 갖는 이차항의 계수가 1인 이차방정식은?

 - ① $x^2 2x 35 = 0$ ② $x^2 + 2x 35 = 0$
 - $3x^2 12x + 35 = 0$ 4 $x^2 + 12x + 35 = 0$

 $x^2 - 8x + 15 = 0$ (x-5)(x-3) = 0

a = 5, b = 3

 $\therefore a + 2 = 7, \ b + 2 = 5$

따라서 5, 7을 두 근으로 하는 이차방정식은 (x-7)(x-5) = 0

 $\therefore x^2 - 12x + 35 = 0$

- ${f 22}$. 두 이차방정식 $ax^2-3x+b=0$, $bx^2-3x+a=0$ 이 같은 근을 가질 때, a + b의 값은? (단, $a \neq b$)
 - ① -2

- ② 0 ③ ± 1 ④ ± 3
- ⑤ ±5

두 방정식의 같은 근(공통근)을 α 라 하면 $a\alpha^2 - 3\alpha + b = 0 \cdots \textcircled{1}$

 $b\alpha^2 - 3\alpha + a = 0 \cdots ②$

① – ②를 하면 $(a-b)\alpha^2 - (a-b) = 0$

 $(a-b)(\alpha^2-1)=0$

 $a \neq b$ 이므로 $\alpha^2 - 1 = 0$ $\therefore \alpha = \pm 1$ a=1 일 때, ① 또는 ②에 대입하면 a+b=3

 $\alpha=-1$ 일 때, ① 또는 ②에 대입하면 a+b=-3 $\therefore a+b=\pm 3$

23. 이차방정식 $4x^2 - 32x + k + 4 = 0$ 의 근의 개수가 1개일 때, 상수 k 의 값을 구하여라.

▶ 답:

▷ 정답: 60

- 해설 이차방정식 $4x^2 - 32x + k + 4 = 0$ 은 중근을 갖는다.

 $4(x^{2} - 8x) = -k - 4$ $4(x^{2} - 8x + 16) = -k - 4 + 64$

 $4x^2 - 32x + k + 4 = 0$

 $4(x^{2} - 8x + 16) = -k - 4 + 6$ $4(x - 4)^{2} = -k + 60$

중근을 가져야 하므로 -k + 60 = 0이다.

중단을 가져야 아므로 -k + 60 ∴ k = 60

24. 이차방정식 $x^2 + ax + b = 0$ 의 근을 구하는데 소연은 일차항의 계수를 잘못 보고 풀어서 두 근이 $x = 1 \pm \sqrt{2}$ 가 나왔고, 소희는 상수항을 잘못 보고 풀어서 두 근이 $x = 2 \pm \sqrt{6}$ 이 나왔다. 이 때, ab의 값은?

해설

근과 계수와의 관계에 의해 $x^2 + ax + b = 0$ 의 두근의 합은 -a, 두 근의 곱은 b이다. 소연이는 상수항은 제대로 본 것이므로 소연이가 구한 두 근의 곱은 $(1+\sqrt{2})(1-\sqrt{2}) = -1 = b$ 한편, 소희는 일차항을 제대로 본 것이므로 소희가 구한 두 근의 합은 $(2+\sqrt{6}) + (2-\sqrt{6}) = -a$ $\therefore a = -4, b = -1$ $\therefore ab = 4$

해설 2 소연이 푼 식은 $\left\{x-(1+\sqrt{2})\right\}\left\{x-(1-\sqrt{2})\right\}=0$ 소연이는 상수항을 제대로 본 것이므로 구하는 상수항 $b=(1+\sqrt{2})(1-\sqrt{2})=-1$ 소희가 푼 식은 $\left\{x-(2+\sqrt{6})\right\}\left\{x-(2-\sqrt{6})\right\}=0$ 소희는 일차항의 계수를 제대로 본 것이므로 일차항의 계수는 $a=-2+\sqrt{6}-2-\sqrt{6}=-4$ 따라서, 처음 이차방정식은 $x^2-4x-1=0$ a=4 **25.** 선물 가게에 원가가 1000원인 물건이 있다. 원가의 a% 의 이익을 붙여서 정가를 정하였다가 할인 기간에 정가의 2a% 를 할인하여 팔았더니 120원의 손해를 보았다. 이 때, a 의 값을 구하여라.

▷ 정답: 10

▶ 답:

- -

원가: 1000원 정가: $1000 \times \left(1 + \frac{a}{100}\right)$ 원

 $1000 \times \left(1 + \frac{a}{100}\right) \times \left(1 - \frac{2a}{100}\right) + 120 = 1000$

$$-10a - \frac{1}{5}a^2 + 1000 + 120 = 1000$$

$$a^{2} + 50a - 600 = 0$$
$$(a + 60) (a - 10) = 0$$