
$\overline{AD} = \overline{BC}$ 이면 $\square ABCD$ 는 평행사변형임을 증명하는 과정이다. 빈 칸에 들어갈 것 중 옳지 않은 것은?

대각선 AC 를 그어보면 대각선 AC 는 삼각형 ADC 와 삼각형

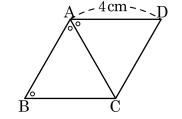
다음 그림과 같은 $\square ABCD$ 에서 $\overline{AB} = \overline{DC}$.

AB = (①) 이고, AD = (②) 이므로

CBA 의 공통부분이 된다.

 $\angle BAC = \angle DCA, \angle DAC = \angle BCA(4)$ 따라서 두 쌍의 대변이 각각 (⑤) 하므로 □ABCD 는 평행사 변형이다.

 \bigcirc CD


② CB

③ SSS

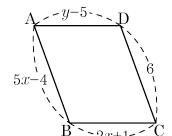
 $\overline{AB} = \overline{DC}, \overline{AD} = \overline{BC}$

⑤ 평행

2. 다음 그림과 같은 □ABCD에서 ∠A의 이등분선이 점 C와 만난다. □ABCD가 평행사변형이 되도록 할 때, AB의 길이를 구하여라.

답: ____ cm

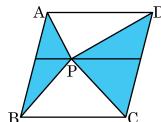
3. 다음 보기 중 평행사변형이 되는 것을 모두 고르면?


보기
⊙ 두 쌍의 대변이 각각 평행한 사각형
© 이웃하는 두 변의 길이가 같은 사각형
© 두 대각선의 길이가 같은 사각형
② 한 쌍의 대변이 평행하고 그 길이가 같은 사각형

2 7, 6

③ ①, ②

④ ¬, □, **⊜ ⑤** ¬, **□**, **⊜**


4. 다음 그림과 같은 평행사변형에서 x, y의 값은?

①
$$x = 1$$
, $y = 5$ ② $x = 2$, $y = 10$ ③ $x = 4$, $y = 4$

 $4 \quad x = 5, \ y = 7$ $5 \quad x = 3, \ y = 2$

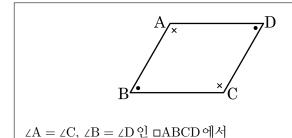
다음 그림과 같은 평행사변형 ABCD 내부의 한 점 P 에 대하여
 □ABCD 의 넓이가 84cm² 일 때, △ABP + △CDP 의 값은?

 \bigcirc 36cm²

② 38cm^2

3) 42cm²

 4.50cm^2

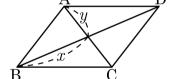

 $\odot 54 \mathrm{cm}^2$

6. 다음은 '두 쌍의 대각의 크기가 각각 같은 사각형은 평행사변형이다.' 를 설명하는 과정이다. 안에 들어갈 알맞은 것은?

3 90°

4 180°

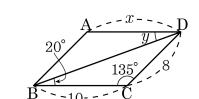
⑤ 360°



$$\therefore a+b=180^{\circ}$$

동측내각의 합이 ____이므로

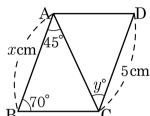
 $\therefore \overline{AB} /\!/ \overline{DC}, \overline{AD} /\!/ \overline{BC}$


고 할 때, x+y의 값을 구하여라. $oldsymbol{A}$

다음 $\Box ABCD$ 이 평행사변형이고, $\overline{AC} = \frac{1}{2}\overline{BD}$, $\overline{BD} = 12$ 가 성립한다

H·_____

8. 다음 그림과 같은 $\square ABCD$ 가 평행사변형이 되도록 하는 x, y의 값은?

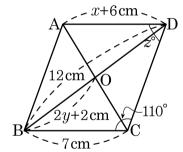


①
$$x = 8, y = 20^{\circ}$$

③
$$x = 10, y = 135^{\circ}$$
 ④ $x = 8, y = 135^{\circ}$

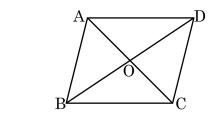
⑤
$$x = 10, y = 25^{\circ}$$

다음 그림과 같은 □ABCD가 평행사변형이 되도록 하는 x, y의 값은?


② x = 4, y = 45

①
$$x = 4$$
, $y = 40$

$$3 \quad x = 5, \quad y = 40$$
 $4 \quad x = 5, \quad y = 45$


⑤
$$x = 10, y = 45$$

10. 평행사변형 ABCD 에서 $\overline{BC}=7\mathrm{cm}, \ \overline{BD}=12\mathrm{cm}, \angle BCD=110^\circ$ 일 때, z-x-y 의 값을 구하여라.(단, 단위생략)

☑ 답: _____

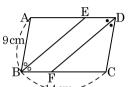
11. 다음 □ABCD 의 두 대각선의 교점을 O 라 할 때, 다음 중 평행사변형 이 되지 않은 것은?

② $\overline{OA} = \overline{OC}$, $\overline{OB} = \overline{OD}$

(4) $\angle A + \angle D = \angle B + \angle C$

①
$$\overline{AB} = \overline{DC}, \overline{AD} = \overline{BC}$$

 $\overline{\text{AB}}/\overline{\text{DC}}, \overline{\text{AD}}/\overline{\text{BC}}$

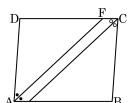

$$=$$
 BC

$$O = BC$$

$$\overline{S} = \overline{DC}$$

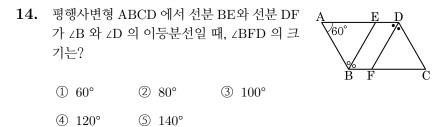
$$\bigcirc$$
 $\overline{AB}//\overline{DC}$, $\overline{AB} = \overline{DC}$

를 구하여라.

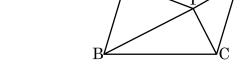


 $^{\mathrm{cm}}$

다음 그림의 평행사변형 ABCD 에서 \overline{BE} , \overline{DF} 는 각각 $\angle B$, $\angle D$ 의 이등분선이다.


 $\overline{AB} = 9$ cm, $\overline{BC} = 14$ cm 일 때. \overline{ED} 의 길이

둘레의 길이를 구하여라.

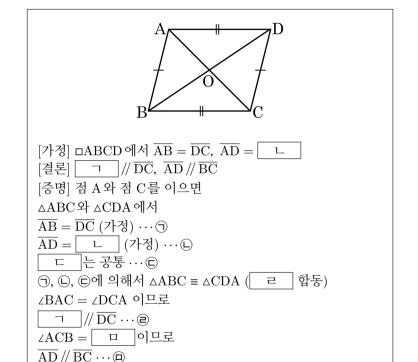


다음 그림과 같이 평행사변형 ABCD 에서 $\angle A$, $\angle C$ 의 이등분선이 변 CD, BA 와 만나는 점을 각각 E, F 라 할 때, $\overline{AF} = 8$ cm, $\overline{DF} = 6$ cm, $\overline{AB} = 7$ cm 이다. 사각형 AECF 의

△PCD, △PAD, △PBC 의 넓이는 각각 10cm², 8cm², 22cm² 이 다.△PAB 의 넓이는?

평행사변형 ABCD 의 내부에 한 점 P 를 잡을 때,

① 10cm^2

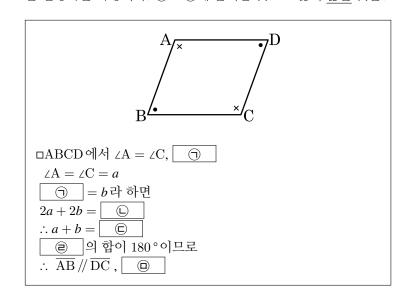

15.

 2 ② 15cm^{2}

 $3 18 \text{cm}^2$

 $4 20 \text{cm}^2$ $5 22 \text{cm}^2$

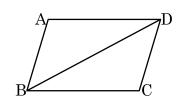
16. 다음은 '두 쌍의 대변의 길이가 각각 같은 사각형은 평행사변형이다.' 를 증명하는 과정이다. ㄱ~ㅁ에 들어갈 것으로 옳지 않은 것은?


 \bigcirc $\neg : \overline{AB}$ ② \vdash : \overline{BC} \bigcirc \Box : \overline{AC}

②. □에 의해서 □ABCD는 평행사변형이다.

④ = : SAS

⑤ □:∠CAD


17. 다음은 '두 쌍의 대각의 크기가 각각 같은 사각형은 평행사변형이다.' 를 설명하는 과정이다. ⑦ ~ ⑩에 들어갈 것으로 옳지 않은 것은?

① \bigcirc : $\angle B = \angle D$ ② \bigcirc : 360° ③ \bigcirc : 180°

④ ②: 엇각 ⑤ ②: AD // BC

18. 다음 그림과 같은 □ABCD 에서 AB = CD, AD = CB 이면 □ABCD 는 평행사변형임을 설명하는 과정이다. ¬○□ 중 옳지 <u>않은</u> 것을 기호로 써라.

대각선 BD를 그어보면 대각선 BD는

○ 삼각형ABD와 삼각형CDB 의 공통부분이 된다.

 $\bigcirc \overline{AB} = \overline{CD}$ 이고

 $\bigcirc \overline{AD} = \overline{CB}$ 이므로

△ABD ≡ △CDB (②SAS 합동)

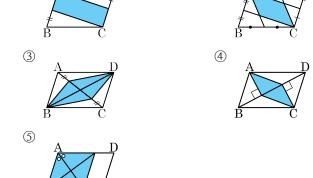
 $\angle ABD = \angle CDB$, $\angle ADB = \angle CBD$ (예<u>성각</u>)

 $\therefore \overline{AB} /\!/ \overline{CD}, \overline{AD} /\!/ \overline{CB}$

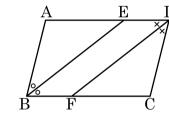
따라서 두 쌍의 대변이 각각 평행하므로 □ABCD 는 평행사변 형이다.

19. 다음 그림과 같이 평행사변형 ABCD 의 대각 선 AC 위에 AE = CF 가 되도록 두 점 E, F 를 잡으면, □BEDF 는 평행사변형이다. 이 것을 증명할 때, 사용되는 평행사변형이 되는 조건은? (단, 삼각형의 합동조건은 사용하지 않는다.)

② 두 쌍의 대변의 길이가 각각 같다.


① 두 쌍의 대변이 각각 평행하다.

- ③ 두 쌍의 대각의 크기가 각각 같다.
- ④ 두 대각선이 서로 다른 것을 이등분하다.
- ⑤ 한 쌍의 대변이 평행하고, 그 길이가 같다.


것은? ① A D A D

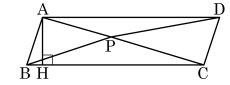
20.

다음 □ABCD 가 평행사변형일 때, 색칠한 사각형 중 종류가 <u>다른</u>

21. 다음 그림과 같은 평행사변형 ABCD 에서 $\angle B$ 와 $\angle D$ 의 이등분선이 \overline{AD} , \overline{BC} 와 만나는 점을 각각 E,F 라 할 때, 다음 보기 중에서 옳은 것은 모두 몇 개인가?

	보기
\bigcirc $\overline{AE} = \overline{DC}$	
© ∠AEB = ∠DFC	

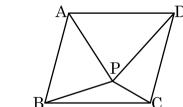
① 2개


② 3개

③ 4 개 ④ 5 개 ⑤ 6개

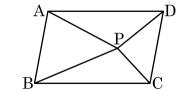
22. 평행사변형 ABCD 에서 대각선 BD 위에 BE = DF 가 되도록 두 점 E, F 를 잡을 때, □AECF 는 평행사변형이다. 이를 증명하기 위해 사용하기에 가장 적합한 평행사변형의 조건은?

- ① 두 쌍의 대변이 각각 평행하다.
- ② 두 쌍의 대변의 길이가 각각 같다.
- ③ 두 쌍의 대각의 크기가 각각 같다.
- ④ 두 대각선이 서로 다른 것을 이등분한다.
- ⑤ 한 쌍의 대변의 길이가 같고 평행하다.


23. 다음 그림과 같은 평행사변형 ABCD에서 $\overline{AD}=15 \mathrm{cm}, \Delta PAB+\Delta PCD=30 \mathrm{cm}^2$ 일 때, \overline{AH} 의 길이는?

① 2cm ② 4cm ③ 6cm ④ 8cm ⑤ 10cm

P에 대하여 Δ PAD와 Δ PBC의 넓이가 4:1일 때, Δ PAD의 넓이는?


다음 그림과 같이 넓이가 40cm² 인 평행사변형 ABCD의 내부의 한 점

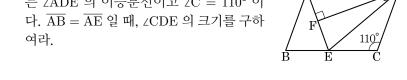
 0.15cm^2 0.16cm^2 $0.3 \text{ } 20 \text{cm}^2$

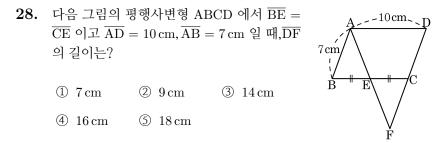
 $4 22 cm^2$ $5 25 cm^2$

5. 다음 그림과 같이 평행사변형 ABCD의 내부에 한 점 P를 잡을 때, □ABCD의 넓이는 60cm²이고, ΔABP의 넓이는 ΔCDP의 넓이의 2 배일 때, ΔCDP의 넓이를 구하면?

① 5cm^2 ② 10cm^2

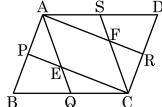
 m^2 3 $15cm^2$


 $4 \ 20 \text{cm}^2$ $5 \ 25 \text{cm}^2$


B

다음 그림과 같은 평행사변형 ABCD의 대각선 \overline{AC} 위의 점 O에 대하여 $\triangle OAD = 8cm^2$, $\triangle OCD = 3cm^2$ 일 때, $\triangle OAB$ 의 넓이를 구하면?

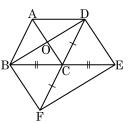
① 4cm^2 ② 5cm^2 ③ 6cm^2 ④ 7cm^2 ⑤ 8cm^2


다음 그림의 평행사변형 ABCD 에서 $\overline{
m DF}$ 는 $\angle ADE$ 의 이등분선이고 $\angle C = 110^{\circ}$ 이 다. $\overline{AB} = \overline{AE}$ 일 때, $\angle CDE$ 의 크기를 구하 여라

그림에서 생기는 평행사변형은 □ABCD 를 포함해서 몇 개인지를 구하여라.

평행사변형 ABCD 에서 각 변의 중점을 P, Q, R, S 라 할 때, 다음

) 1 개 ② 2 개 ③ 3 개


29.

⑤ 5 개

- **30.** 다음 중 평행사변형이 <u>아닌</u> 것은?
 - ① $\overline{AB} = \overline{CD}, \overline{AB} /\!/ \overline{CD}$
 - ② $\overline{AD} // \overline{BC}$, $\angle A = \angle B = 90^{\circ}$
 - \bigcirc $\angle A = \angle C, \angle B = \angle D$

 \bigcirc $\overline{AB} // \overline{CD}, \overline{AD} // \overline{BC}$

구하여라. **>** 단: cm²

립· cm²

다음 그림과 같이 평행사변형 ABCD 에서 $\overline{BC} = \overline{CE}$, $\overline{DC} = \overline{CF}$ 가 되도록 \overline{BC} , \overline{DC} 의 연장선 위에 각각 점 E, F 를 잡았다. $\triangle ADC$ 의 넓이가 7 cm^2 일 때, $\Box BFED$ 의 넓이를