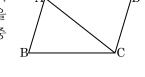
다음 그림과 같은 $\square ABCD$ 에서 $\overline{AB} = \overline{DC}$, 1. $\overline{\mathrm{AD}} = \overline{\mathrm{BC}}$ 이면 $\square \mathrm{ABCD}$ 는 평행사변형임을 증명하는 과정이다. 빈 칸에 들어갈 것 중 옳지 <u>않은</u> 것은?



CBA 의 공통부분이 된다. $\overline{AB}=(\ \textcircled{1} \)$ 이코, $\overline{AD}=(\ \textcircled{2} \)$ 이므로 \triangle ADC \equiv \triangle CBA (③ 합동) $\angle BAC = \angle DCA, \angle DAC = \angle BCA(\textcircled{4})$ 따라서 두 쌍의 대변이 각각 (⑤)하므로 □ABCD 는 평행사 변형이다.

대각선 AC 를 그어보면 대각선 AC 는 삼각형 ADC 와 삼각형

③ SSS

 $\overline{\text{AB}} = \overline{\text{DC}}, \overline{\text{AD}} = \overline{\text{BC}}$

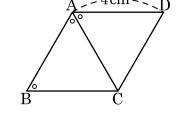
 $\odot \overline{CB}$

⑤ 평행

해설

 $\textcircled{4} \ \overline{AB} \hspace{0.5mm} / \hspace{0.5mm} \overline{DC}, \overline{AD} \hspace{0.5mm} / \hspace{0.5mm} \overline{BC}$

2. 다음 그림과 같은 □ABCD에서 ∠A의 이등분선이 점 C와 만난다. □ABCD가 평행사변형이 되도록 할 때, \overline{AB} 의 길이를 구하여라.



 $\underline{\mathrm{cm}}$

정답: 4 cm

▶ 답:

∠ACB = • = ∠ACD = ∠ADC이므로

해설

△ABC ≡ △ACD는 정삼각형이다. ∴ AB = 4cm

3. 다음 보기 중 평행사변형이 되는 것을 모두 고르면?

보기

- ⊙ 두 쌍의 대변이 각각 평행한 사각형
- ⓒ 이웃하는 두 변의 길이가 같은 사각형
- © 두 대각선의 길이가 같은 사각형

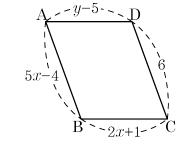
② 한 쌍의 대변이 평행하고 그 길이가 같은 사각형

④ ¬, □, ≘
⑤ ¬, □, ∈

③¬, ⊜

평행사변형이 되는 조건에 해당하는 것은 ①, ② 이다.

다음 그림과 같은 평행사변형에서 x, y의 값은? 4.

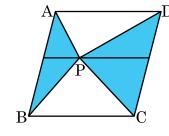


- ① x = 1, y = 5 ② x = 2, y = 10 ③ x = 4, y = 4
 - $4 \quad x = 5, \ y = 7$ $5 \quad x = 3, \ y = 2$

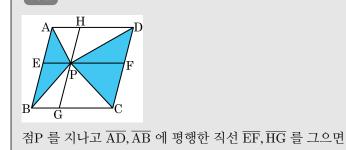
대변의 길이가 같으므로 5x-4=6 이고 2x+1=y-5 이다.

따라서 x = 2, y = 10

다음 그림과 같은 평행사변형 ABCD 내부의 한 점 P 에 대하여
 □ABCD 의 넓이가 84cm² 일 때, △ABP + △CDP 의 값은?

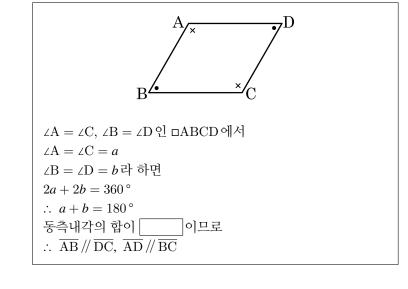


- ① 36cm^2 ④ 50cm^2
- $2 38 \text{cm}^2$
- 342cm^2
- \bigcirc 54cm²



 $\square AEPH$, $\square EBGP$, $\square PGCF$, $\square HPFD$ 는 모두 평행사변형이다. $\triangle ABP + \triangle PCD = \triangle APD + \triangle PBC$ 이므로 색칠한 부분의 넓이는 $\square ABCD$ 의 $\frac{1}{2}$ 이다. $\triangle ABP + \triangle CDP = 84 \times \frac{1}{2} = 42 (cm^2)$

6. 다음은 '두 쌍의 대각의 크기가 각각 같은 사각형은 평행사변형이다.' 를 설명하는 과정이다. 안에 들어갈 알맞은 것은?

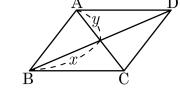


① 45° ② 60° ③ 90° ④ 180° ⑤ 360°

동측내각의 합이 180°이면 대변을 연장한 두 직선의 엇각의

크기가 같게 된다.

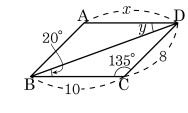
7. 다음 $\Box ABCD$ 이 평행사변형이고, $\overline{AC}=\frac{1}{2}\overline{BD}$, $\overline{BD}=12$ 가 성립한다 고 할 때, x + y의 값을 구하여라.



▶ 답: ▷ 정답: 9

 $\overline{AC} = \frac{1}{2}\overline{BD}, \ \overline{BD} = 12$ 이므로 $\overline{AC} = 6$ 이다. 따라서 $\overline{AC} + \overline{BD} = 18$ 이므로 x + y = 9이다.

8. 다음 그림과 같은 $\square ABCD$ 가 평행사변형이 되도록 하는 x, y의 값은?



 $3 x = 10, y = 135^{\circ}$

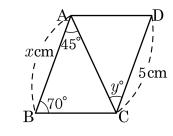
① $x = 8, y = 20^{\circ}$

- ② $x = 10, y = 20^{\circ}$ ④ $x = 8, y = 135^{\circ}$
- ⑤ $x = 10, y = 25^{\circ}$

해설

 $x = 10, y = 20^{\circ}$

다음 그림과 같은 $\square ABCD$ 가 평행사변형이 되도록 하는 x, y의 값은? 9.

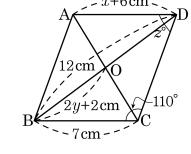


- ① x = 4, y = 40③ x = 5, y = 40
- ② x = 4, y = 454x = 5, y = 45
- ⑤ x = 10, y = 45

$x = \overline{\text{CD}} = 5 \text{(cm)}$ 이므로 x = 5

 $\overline{AB} /\!/ \overline{CD}$ 이므로 $\angle BAC = \angle DCA$ $\therefore y = 45$

10. 평행사변형 ABCD 에서 $\overline{BC}=7\mathrm{cm},\ \overline{BD}=12\mathrm{cm}, \angle BCD=110^{\circ}$ 일 때, z - x - y 의 값을 구하여라.(단, 단위생략)



▷ 정답: 67

답:

 $\overline{\mathrm{AD}} = \overline{\mathrm{BC}}$ 이므로 x + 6 = 7

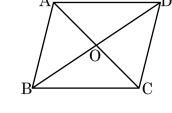
 $\therefore x = 1 \text{(cm)}$ 평행사변형의 대각선은 서로 다른 것을 이등분하므로

 $\overline{\mathrm{OB}} = \frac{1}{2}\overline{\mathrm{BD}}, \stackrel{Z}{r} 2y + 2 = 6$

 $\therefore y = 2(\text{cm})$ $\angle \mathrm{C} + \angle \mathrm{D} = 180^\circ$, 즉 $110^\circ + z = 180^\circ$ 이므로 $z = 70^\circ$

 $\therefore z - x - y = 67$

11. 다음 □ABCD 의 두 대각선의 교점을 O 라 할 때, 다음 중 평행사변형 이 되지 <u>않은</u> 것은?

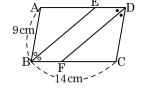


- ① $\overline{AB} = \overline{DC}$, $\overline{AD} = \overline{BC}$ ③ $\overline{AB}//\overline{DC}$, $\overline{AD}//\overline{BC}$
- ② $\overline{OA} = \overline{OC}$, $\overline{OB} = \overline{OD}$ ④ $\angle A + \angle D = \angle B + \angle C$

 $\angle A + \angle D = \angle C + \angle D$ 가 되어야 한다.

해설

12. 다음 그림의 평행사변형 ABCD 에서 BE, DF 는 각각 ∠B, ∠D 의 이등분선이다. AB = 9cm, BC = 14cm 일 때, ED 의 길이를 구하여라.



답:> 정답: 5 cm

 $\underline{\mathrm{cm}}$

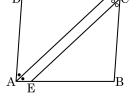
 $\overline{\mathrm{AD}} \ /\!\!/ \ \overline{\mathrm{BC}}$ 이므로 $\angle \mathrm{EBF} = \angle \mathrm{AEB}$ 따라서 $\triangle \mathrm{ABE}$ 는 이등변삼각형이다. $\angle \mathrm{EBF} = \angle \mathrm{AEB}$ 이므로

 $\overline{AE} = \overline{AB} = 9 \text{ cm}$

 $\therefore \overline{ED} = \overline{AD} - \overline{AE} = 14 - 9 = 5(\text{ cm})$

13. 다음 그림과 같이 평행사변형 ABCD 에서 $\angle A$, $\angle C$ 의 이등분선이 변 CD, BA 와 만나는 점을 각각 E, F 라 할 때, $\overline{\mathrm{AF}} = 8\mathrm{cm}, \ \overline{\mathrm{DF}} =$ $6 \mathrm{cm}, \ \overline{\mathrm{AB}} = 7 \mathrm{cm}$ 이다. 사각형 AECF 의 둘레의 길이를 구하여라.

 $\underline{\mathrm{cm}}$

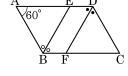


▶ 답: ▷ 정답: 18 cm

해설

□ABCD 가 평행사변형이므로 $\angle BAD = \angle BCD$ 이므로 $\frac{\angle BAD}{2} = \frac{\angle BCD}{2}$ ∠ECF = ∠CEB (∵ 엇각) ∠AFD = ∠FAE (∵ 엇각) $\therefore \angle \mathrm{AEC} = \angle \mathrm{AFC}$ 두 쌍의 대각의 크기가 각각 같으므로 □AFCE 는 평행사변형 평행사변형의 두 대변의 길이는 같으므로 $2 \times (8+1) = 18$ (cm) 이다.

 ${f 14.}$ 평행사변형 ABCD 에서 선분 BE와 선분 DF 가 ∠B 와 ∠D 의 이등분선일 때, ∠BFD 의 크 기는? ① 60°



② 80°

③ 100°

4 120°

⑤ 140°

사각형 ABCD 가 평행사변형이므로 $\angle BAD + \angle ABC = 180^\circ$

해설

∠ABC = 2∠EBF 이므로 ∠EBF = 60° 이다. 사각형 BFDE 는 평행사변형이므로 \angle EBF + \angle BFD = 180° ∴ $\angle BFD = 120^{\circ}$

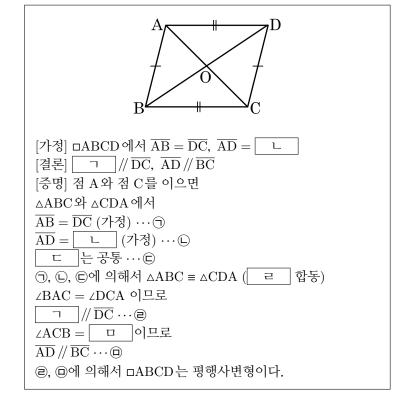
15. 평행사변형 ABCD 의 내부에 한 점 P 를 잡을 때, $\Delta PCD,~\Delta PAD,~\Delta PBC$ 의 넓이는 각각 $10 cm^2$, $8 cm^2$, $22 cm^2$ 이 다.△PAB 의 넓이는?

- $\textcircled{1} \ 10 \mathrm{cm}^2$ 420cm^2
- $2 15 \text{cm}^2$ \bigcirc 22cm²
- $3 18 \text{cm}^2$

 $\triangle \mathrm{PAD} + \triangle \mathrm{PBC} = \triangle \mathrm{PAB} + \triangle \mathrm{PCD}$

 $8 + 22 = \triangle PAB + 10$ $\therefore \triangle PAB = 20(cm^2)$

16. 다음은 '두 쌍의 대변의 길이가 각각 같은 사각형은 평행사변형이다.' 를 증명하는 과정이다. ㄱ ~ ㅁ에 들어갈 것으로 옳지 <u>않은</u> 것은?



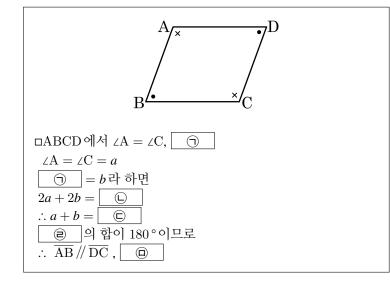
④ = : SAS ⑤ □ : ∠CAD

해설

① $\neg : \overline{AB}$ ② $\vdash : \overline{BC}$ ③ $\vdash : \overline{AC}$

△ABC ≡ △CDA (SSS 합동)

17. 다음은 '두 쌍의 대각의 크기가 각각 같은 사각형은 평행사변형이다.' 를 설명하는 과정이다. \bigcirc ~ \bigcirc 에 들어갈 것으로 옳지 <u>않은</u> 것은?

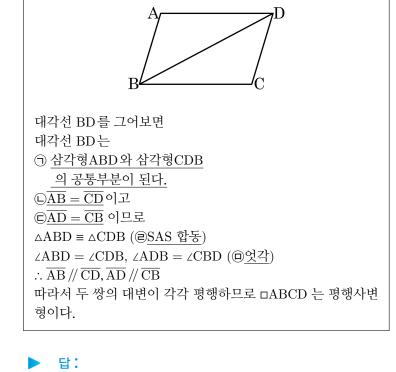


④@: 엇각 ⑤ @: AD // BC

① ① : $\angle B = \angle D$ ② ② : 360° ③ © : 180°

동측내각의 합이 180°이다.

18. 다음 그림과 같은 □ABCD 에서 AB = CD, AD = CB 이면 □ABCD 는 평행사변형임을 설명하는 과정이다. ⑤~⑥ 중 옳지 <u>않은</u> 것을 기호로 써라.

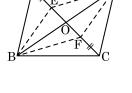


▷ 정답: ②

해설

SSS 합동

19. 다음 그림과 같이 평행사변형 ABCD 의 대각 선 AC 위에 AE = CF 가 되도록 두 점 E, F를 잡으면, □BEDF 는 평행사변형이다. 이 것을 증명할 때, 사용되는 평행사변형이 되는 조건은? (단, 삼각형의 합동조건은 사용하지 않는다.)

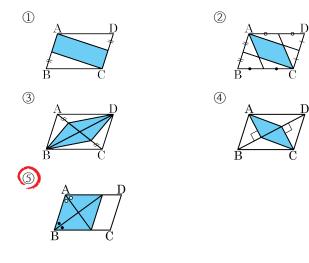


- 두 쌍의 대변이 각각 평행하다.
 두 쌍의 대변의 길이가 각각 같다.
- ③ 두 쌍의 대각의 크기가 각각 같다.
- ④ 두 대각선이 서로 다른 것을 이등분한다.
- ⑤ 한 쌍의 대변이 평행하고, 그 길이가 같다.

 $\square ABCD$ 는 평행사변형이므로 $\overline{AO} = \overline{CO}$ 이므로

 $\overline{\mathrm{EO}} = \overline{\mathrm{AO}} - \overline{\mathrm{AE}} = \overline{\mathrm{CO}} - \overline{\mathrm{FC}} = \overline{\mathrm{FO}}$, $\overline{\mathrm{BO}} = \overline{\mathrm{DO}}$ 이다.

$oldsymbol{20}$. 다음 $\Box ABCD$ 가 평행사변형일 때, 색칠한 사각형 중 종류가 <u>다른</u> 것은?

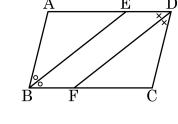


①,②,③,④ : 평행사변형

해설

⑤ 마름모

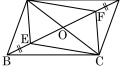
21. 다음 그림과 같은 평행사변형 ABCD 에서 $\angle B$ 와 $\angle D$ 의 이등분선이 \overline{AD} , \overline{BC} 와 만나는 점을 각각 E,F 라 할 때, 다음 보기 중에서 옳은 것은 모두 몇 개인가?



사각형 BEDF 는 평행사변형이고, ΔABE ≡ ΔCDF 이므로 ⑦~⑹ 모두 옳다.

22. 평행사변형 ABCD 에서 대각선 BD 위에 $\overline{BE} = \overline{DF}$ 가 되도록 두 점 E,F 를 잡을 때, □AECF 는 평행사변형이다. 이를 증명하기 위해 사용하기에 가장 적합한

평행사변형의 조건은?



- ② 두 쌍의 대변의 길이가 각각 같다.
- ③ 두 쌍의 대각의 크기가 각각 같다.

① 두 쌍의 대변이 각각 평행하다.

- ④ 두 대각선이 서로 다른 것을 이등분한다.
- ⑤ 한 쌍의 대변의 길이가 같고 평행하다.

(가정) $\square ABCD$ 는 평행사변형, $\overline{BE} = \overline{DF}$

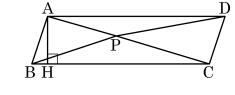
해설

(결론) □AECF 는 평행사변형 (증명) □ABCD 는 평행사변형이므로 $\overline{\mathrm{OA}} = \overline{\mathrm{OC}}$

가정에서 $\overline{\mathrm{BE}} = \overline{\mathrm{DF}}$ 이므로 $\overline{\mathrm{OE}} = \overline{\mathrm{OF}}$ 따라서 두 대각선이 서로 다른 것을 이등분하므로 □AECF

는 평행사변형이다.

23. 다음 그림과 같은 평행사변형 ABCD에서 $\overline{\mathrm{AD}}=15\mathrm{cm},\,\Delta\mathrm{PAB}+$ $\Delta PCD = 30 cm^2$ 일 때, \overline{AH} 의 길이는?



 \bigcirc 2cm

해설

②4cm

③ 6cm

④ 8cm

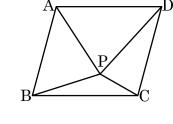
 \bigcirc 10cm

내부의 한 점 P에 대하여 $\frac{1}{2}$ \square ABCD = \triangle PAB + \triangle PCD = $\triangle PAD + \triangle PBC$ 이다. $\Delta PAB + \Delta PCD = 30 cm^2$ 이므로 평행사변형의 넓이는 $30 \times 2 =$

 $(60 \mathrm{cm}^2)$ 이다. 카로의 길이 $\overline{AD}=15 \mathrm{cm}$ 이므로 $\overline{AD} \times \overline{AH}=15 \times \overline{AH}=60 \mathrm{(cm^2)}$

이다. ∴ $\overline{AH} = 4(cm)$ 이다.

 ${f 24}$. 다음 그림과 같이 넓이가 $40{
m cm}^2$ 인 평행사변형 ${
m ABCD}$ 의 내부의 한 점 P에 대하여 ΔPAD와 ΔPBC의 넓이가 4:1일 때, ΔPAD의 넓이는?



- 4 22cm^2
- 216cm^2 \bigcirc 25cm²
- $3 20 \text{cm}^2$

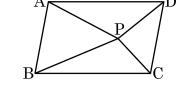
내부의 한 점 P에 대하여 $\frac{1}{2}$ \square ABCD = \triangle PAB + \triangle PCD = $\triangle PAD + \triangle PBC$ 이다. $\Box ABCD = \triangle PAB + \triangle PBC + \triangle PCD + \triangle PAD = 2 \times \big(\triangle PBC +$ $\triangle PAD)$

 $\triangle PBC + \triangle PAD = 40 \times \frac{1}{2} = 20 (cm^2)$ 이코,

ΔPAD : ΔPBC = 4 : 1이므로

 $\therefore \ \Delta \mathrm{PAD} = 20 \times \frac{4}{5} = 16 (\mathrm{cm}^2)$

 ${f 25}$. 다음 그림과 같이 평행사변형 ${
m ABCD}$ 의 내부에 한 점 ${
m P}$ 를 잡을 때, □ABCD의 넓이는 60cm² 이고, △ABP의 넓이는 △CDP의 넓이의 2 배일 때, △CDP의 넓이를 구하면 ?



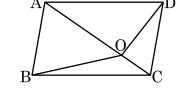
- \bigcirc 5cm² $\textcircled{4} \ \ 20 \mathrm{cm}^2$
- 210cm^2 \bigcirc 25cm²
- 315cm^2

내부의 한 점 P에 대하여 $\frac{1}{2}$ \square ABCD = \triangle PAB + \triangle PCD = △PAD + △PBC 이므로

 $\triangle ABP + \triangle CDP = \frac{1}{2} \square ABCD$ 이다.

 $\triangle ABP = 2\triangle CDP$ 이므로 $3\triangle CDP = \frac{1}{2}\Box ABCD$ $\therefore \ \triangle CDP = \frac{1}{6} \square ABCD = 10 (cm^2)$

 ${f 26}$. 다음 그림과 같은 평행사변형 ${
m ABCD}$ 의 대각선 ${
m \overline{AC}}$ 위의 점 ${
m O}$ 에 대하 여 $\triangle OAD = 8cm^2$, $\triangle OCD = 3cm^2$ 일 때, $\triangle OAB$ 의 넓이를 구하면?



② 5cm^2 ③ 6cm^2 38cm^2 $\bigcirc 4 \text{cm}^2$ $4 \text{ } 7\text{cm}^2$

평행사변형의 대각선은 평행사변형의 넓이를 이등분하므로 $\triangle ABC = \triangle ACD = \triangle AOD + \triangle OCD = 11(cm^2)$ 이다.

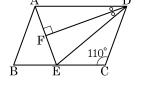
 $\triangle OAB = x$ 라고 하면

 $\triangle OBC = 11 - x$ 또, $\triangle OAD : \triangle OCD = \overline{OA} : \overline{OC} = \triangle OAB : \triangle OBC 에서$

해설

8:3=x:(11-x), 3x=8(11-x) $\therefore x = 8(\text{cm}^2)$

27. 다음 그림의 평행사변형 ABCD 에서 $\overline{\rm DF}$ 는 $\angle {\rm ADE}$ 의 이등분선이고 $\angle {\rm C}=110^\circ$ 이다. $\overline{\rm AB}=\overline{\rm AE}$ 일 때, $\angle {\rm CDE}$ 의 크기를 구하여라.



➢ 정답: 30º

▶ 답:

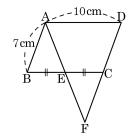
 $\angle B = 70^\circ$, $\overline{AB} = \overline{AE}$ 이므로 $\angle AEB = 70^\circ$, $\angle EAD = 70^\circ$ (엇각)

해설

따라서 ∠ADF = 20°, ∠CDE = 70° - 20° - 20° = 30°이다.

28. 다음 그림의 평행사변형 ABCD 에서 $\overline{BE}=\overline{CE}$ 이고 $\overline{AD}=10\,\mathrm{cm},\overline{AB}=7\,\mathrm{cm}$ 일 때, \overline{DF} 의 길이는?

① 7 cm ④ 16 cm ② 9 cm ③ 18 cm



 $\overline{AB} = \overline{DC} = 7 \,\text{cm}, \ \overline{BE} = \overline{CE} = 5 \,\text{cm}$

해설

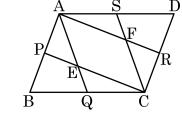
∠AEB = ∠FEC (맞꼭지각) ∠ABE = ∠FCE (엇각)

 $\triangle ABE \equiv \triangle FCE (924)$ $\triangle ABE \equiv \triangle FCE, \overline{AB} = \overline{FC} = 7 \text{ cm}$

 $\therefore \overline{\mathrm{DF}} = \overline{\mathrm{DC}} + \overline{\mathrm{FC}} = 14(\mathrm{\,cm})$

` '

29. 평행사변형 ABCD 에서 각 변의 중점을 P, Q, R, S 라 할 때, 다음 그림에서 생기는 평행사변형은 □ABCD 를 포함해서 몇 개인지를 구하여라.



③ 3 개

④ 4 개 ⑤ 5 개

□ABCD, □AQCS, □APCR, □AECF

① 1개 ② 2개

30. 다음 중 평행사변형이 <u>아닌</u> 것은?

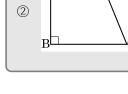
- ① $\overline{AB} = \overline{CD}$, $\overline{AB} / / \overline{CD}$
- ② $\overline{AD} // \overline{BC}$, $\angle A = \angle B = 90^{\circ}$ ③ $\angle A = \angle C$, $\angle B = \angle D$
- - -
- $\overline{AB} = \overline{CD}, \overline{AD} = \overline{BC}$
- \bigcirc $\overline{AB} / / \overline{CD}, \overline{AD} / / \overline{BC}$

평행사변형이 되는 조건

다음의 각 경우의 어느 한 조건을 만족하면 평행사변형이 된다.

(1)두 쌍의 대변이 각각 평행하다.(정의)

- (2) 두 쌍의 대변의 길이가 각각 같다.(3) 두 쌍의 대각의 크기가 각각 같다.
- (4) 두 대각선이 서로 다른 것을 이등분한다.
- (5) 한 쌍의 대변이 평행하고 그 길이가 같다.



31. 다음 그림과 같이 평행사변형 ABCD 에서 BC = CE, DC = CF 가 되도록 BC, DC 의 연장선 위에 각각 점 E, F 를 잡았다. △ADC 의 넓이가 7 cm² 일 때, □BFED 의 넓이를 구하여라.

 답:
 cm²

 ▷ 정답:
 28 cm²

두 대각선이 서로 다른 것을 이등분했으므로 □BDEF 는 평행사

해설

변형이 된다. $\Delta \text{CBD} \text{ 의 넓이는 } \square \text{ABCD} \text{ 의 } \frac{1}{2} \text{ 이므로 } \triangle \text{ADC} \text{ 의 넓이와 같다.}$

 $\triangle CBD = 7 \text{ cm}^2, \square BFED = 4 \times \triangle CBD$ $\therefore \square BFED = 4 \times 7 = 28 \text{ (cm}^2\text{)}$