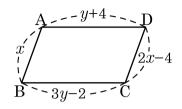
1. 다음 □ABCD가 평행사변형이 되도록 하는 x, y의 값을 구하여라.



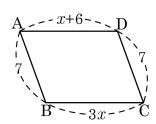
- 답:
- 답:
- > 정답: x = 4
- > 정답: y = 3

해설

두 쌍의 대변의 길이가 각각 같은 사각형은 평행사변형이므로

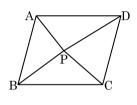
$$x = 2x - 4$$
, $y + 4 = 3y - 2$
 $\therefore x = 4$, $y = 3$

2. 다음 그림과 같은 \Box ABCD가 평행사변형이 되도록 하는 x의 값을 구하여라.



$$x+6=3x$$
이므로 $x=3$ 이다.

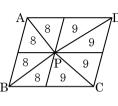
3. 다음 그림과 같이 평행사변형 ABCD의 내부에 한 점 P를 잡았다. △PAB의 넓이 가 16 cm², △PCD의 넓이가 18 cm²일 때, □ABCD의 넓이를 구하여라.



 $68 \text{ (cm}^2)$

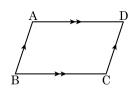
$$\underline{\mathrm{cm}^2}$$

$$16 + 18 = \frac{1}{2} \square ABCD, \square ABCD =$$



 $\overline{
m AD}\,/\!/\,\overline{
m BC}$, $\overline{
m AB}\,/\!/\,\overline{
m CD}$ 를 만족할 때, 직사각 형이 되는 조건을 모두 고르면?

다음 그림과 같은 사각형 ABCD 가



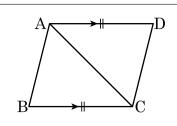
① ∠A = ∠C 이다.

4.

- ② ∠A = ∠D 이다.
- ③ \overline{AC} 와 \overline{BD} 가 만나는 점을 O 라고 할 때, $\overline{AO} \bot \overline{DO}$ 이다.
- (4) \overline{AD} 의 중점을 M 이라고 할 때, $\overline{BM} = \overline{CM}$ 이다.
- ⑤ $\overline{AB} = \overline{CD}$ 이고, $\overline{AB} / / \overline{CD}$ 이다.

- 한 내각이 직각인 평행사변형은 직사각형이다.
- ② $\angle A = \angle D = 90^{\circ}$
- ④ $\triangle ABM \equiv \triangle DCM$ (SSS 합동) 이므로 $\angle A = \angle D = 90\,^{\circ}$

5. 다음은 '한 쌍의 대변이 평행하고 그 길이가 같은 사각형은 평행사 변형이다.'를 증명하는 과정이다. 밑줄 친 부분 중 틀린 곳을 모두 고르면?



가정) $\Box ABCD$ 에서 \overline{AD} // \overline{BC} , \neg . $\overline{AD} = \overline{BC}$ 결론) \overline{AB} // \overline{DC}

증명) 대각선 AC를 그으면

△ABC와 △CDA에서 \neg . $\overline{AD} = \overline{BC}$ (가정) · · · \bigcirc

∟. ∠DCA = ∠BAC (엇각) ··· ©

ㄷ. AC 는 공통 ····ⓒ

 \bigcirc , \bigcirc , \bigcirc 에 의해서 $\triangle ABC \equiv \triangle CDA$ (ㄹ. SAS 합동) □. ∠DAC = ∠BCA 이므로

 $\therefore \overline{AB} // \overline{DC}$

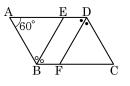
따라서 두 쌍의 대변이 각각 평행하므로

□ABCD는 평행사변형이다.

③ □ ④ ⊒

해설

 \vdash . $\angle DCA = \angle BAC \rightarrow \angle DAC = \angle BCA$ \Box /DAC = /BCA \rightarrow /DCA = /BAC **6.** 평행사변형 ABCD 에서 선분 BE와 선분 DF 가 ∠B 와 ∠D 의 이등분선일 때, ∠BFD 의 크기는?

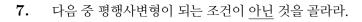


- ① 60° ② 80° ③ 100°
- (4) 120° (5) 140°

사각형 ABCD 가 평행사변형이므로 ∠BAD + ∠ABC = 180° ∠ABC = 2∠EBF 이므로 ∠EBF = 60° 이다.

사각형 BFDE 는 평행사변형이므로 ∠EBF + ∠BFD = 180°

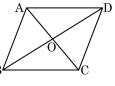
∴ ∠BFD = 120°



- ⊙ 두 대각선이 서로 다른 것을 이등분한다.
- 두 쌍의 대각의 크기가 각각 같다.
- ⓒ 한 쌍의 대변이 평행하고, 한 쌍의 대변의 길이가 같다.
- ② 두 쌍의 대변이 각각 평행하다.
- ◎ 두 쌍의 대변의 길이가 각각 같다.
- ▶ 답:
- ▷ 정답: □

해설

© 평행사변형이 되려면 한 쌍의 대변이 평행이고 그 길이가 같아야 한다 8. 다음 그림과 같은 평행사변형 ABCD에서 점 O가 두 대각선의 교점일 때, △ABC의 넓이가 24였다. △COD의 넓이는?



 \bigcirc 6

(3) 24

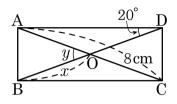
4 48

⑤ 알수없다.

△ABO, △OBC, △OCD, △OAD의 넓이가 같으므로

 $\triangle OCD = \frac{1}{2} \times \triangle ABC = 12$ 이다.

9. 다음 직사각형 ABCD 의 x, y 의 값을 차례로 나열한 것은?



① 2cm, 30 $^{\circ}$

② 3cm, 30°

3 3cm, 40°

4cm, 30°

(5)4cm, 40°

해설

$$\overline{AC} = \overline{BD} = 8\text{cm}$$
, $\overline{BO} = x = \frac{\overline{BD}}{2} = \frac{8}{2} = 4(\text{cm})$

∠ADO = ∠DAO , 삼각형의 외각의 성질을 이용하여 ∠y = ∠ADO + ∠DAO = 20° + 20° = 40° **10.** 다음 직사각형 ABCD 에서 $\angle x$ 의 크기를 구하여라.



답:

▷ 정답: 80°

해설

 $\angle A = 90^{\circ}$ 이고 $\angle OAD = 40^{\circ}$ 이므로 $\angle OAB = 90^{\circ} - 40^{\circ} = 50^{\circ}$ 이고,

 ΔOAB 는 이등변 삼각형이므로 $\angle x = 180^{\circ} - 50^{\circ} - 50^{\circ} = 80^{\circ}$

이다.