1. -64의 세제곱근을 구하여라.

▶ 답:

ightharpoonup 정답: -4, $2+2\sqrt{3i}$, $2-2\sqrt{3i}$

$$-64$$
의 세제곱근은 $x^3 = -64$ 를 만족하는 x 의 값이므로 $x^3 + 64 = 0$ 에서

$$(x+4)(x^2 - 4x + 16) = 0$$

$$\therefore x + 4 = 0 \ \exists \exists x + 16 = 0$$

$$\therefore x = -4 \, \, \text{\!\! L} \, x = 2 + 2 \, \sqrt{3}i \, \, \text{\!\! L} \, x = 2 - 2 \, \sqrt{3}i$$

따라서
$$-64$$
의 세제곱근은 -4 , $2+2\sqrt{3i}$, $2-2\sqrt{3i}$

해설
$$2^{\frac{4}{5}} \times 2^{\frac{6}{5}} = 2^{\frac{10}{5}} = 2^2 = 4$$

- **3.** $\log_{(x+2)} 3$ 의 값이 존재하기 위한 x의 범위는?
 - ① x < 1 ② x > -1

(5) -2 < x < -1, x > 1

 $\bigcirc -2 < x < -1, \ x > -1$

(4) -2 < x < 1

- 4. 등식 $\sqrt[4]{a}\sqrt{\sqrt[3]{a^2}}=27$ 을 만족하는 양수 a의 값은?
 - ① 3

(2) 3^2

- 3^{3}
 - ,

(4) 3⁶

$$\sqrt[4]{a\sqrt[3]{a^2}} = \left\{a(a^{\frac{2}{3}})^{\frac{1}{2}}\right\}^{\frac{1}{4}}
= (a \cdot a^{\frac{2}{3} \cdot \frac{1}{2}})^{\frac{1}{4}}
= (a^{\frac{4}{3}})^{\frac{1}{4}} = a^{\frac{1}{3}}$$

$$a^{\frac{1}{3}} = 3^3$$
이므로 $(a^{\frac{1}{3}})^3 = (3^3)^3$
∴ $a = 3^9$

5.
$$\frac{1}{2}\log_2 3 + 5\log_2 \sqrt{2} - \log_2 \sqrt{6}$$
의 값은?

$$\frac{1}{2}\log_2 3 + 5\log_2 \sqrt{2} - \log_2 \sqrt{6}$$

$$= \log_2 \sqrt{3} + \log_2 4\sqrt{2} - \log_2 \sqrt{6}$$
$$= \log_2 \frac{\sqrt{3} \times 4\sqrt{2}}{\sqrt{6}}$$

$$=\log_2\frac{1}{\sqrt{6}}$$

$$= \log_2 4$$
$$= 2$$

6.
$$x = \frac{\log_a(\log_a b)}{\log_a b}$$
 일 때, 다음 중 b^x 과 같은 것은?

① a

② b

 $3a^b$

(4) b^2

주어진 식을 밑 변환의 공식에 의해 변형하면
$$x = \frac{\frac{\log_b(\log_a b)}{\log_b a}}{\frac{\log_b b}{\log_b a}} = \log_b(\log_a b)$$

로그의 정의에 의해 $b^x = \log_a b$

7. $\log_{\sqrt{2}} 9^{\log_3 8}$ 의 값을 구하여라.

이 생
$$\log_{\sqrt{2}} 9^{\log_3 8} = \log_{2^{\frac{1}{2}}} 3^{2\log_3 8} = \log_{2^{\frac{1}{2}}} 3^{\log_3 64}$$
$$= \log_{2^{\frac{1}{2}}} 64 = \log_{2^{\frac{1}{2}}} 2^6 = 12$$

1이 아닌 양수 p와 세 양수 x, y, z에 대하여 $\log_p x + 2\log_{p^2} y +$ $3\log_{n^3} z = -3$ 가 성립할 때, xyz의 값은?

② $\frac{1}{2p}$ ③ $\frac{1}{2}$

 $\bigcirc 2p$

해설
$$\log_{x} x$$

$$\log_p x + 2\log_{p^2} y + 3\log_{p^3} z$$

$$= \log_p x + \frac{2}{2}\log_p y + \frac{3}{3}\log_p z$$

$$= \log_p xyz = -3$$

 $\therefore xyz = p^{-3} = \frac{1}{p^3}$

9. $\log_2 14$ 의 소수부분을 $a(0 \le a < 1)$ 이라 할 때, 2^{a+2} 의 값을 구하여라.

$$\log_2 4 < \log_2 7 < \log_2 8$$

 $2 < \log_2 n < 3$
 정수 부분: $1+2=3$
소수 부분: $\log_2 14-3 = \log_2 \frac{14}{8} = a$
 $a+2=a+\log_2 4$

 $\log_2 14 = 1 + \log_2 7$

$$2^{a+2} = 2^{\log_2 7} = 7$$

 $= \log_2 \frac{14}{8} \cdot 4 = \log_2 \frac{14}{2} = \log_2 7$

10.
$$\log_2 3 = a$$
, $\log_3 7 = b$ 일 때, $\log_{36} 42 \stackrel{d}{=} a$, b 로 나타내면?

$$\begin{array}{c}
1 + a + ab \\
\hline
1 + a \\
4
\end{array}$$

$$\begin{array}{c}
1 + a + ab \\
\hline
2(1 + a)
\end{array}$$

해설

$$2 \frac{1+a+2ab}{1+a}$$

$$3 \frac{2+a+2ab}{2(1+a)}$$

로그의 밑을 3으로 통일시키면
$$\log_3 2 = \frac{1}{\log_2 3} = \frac{1}{a}, \ \log_3 7 = b$$

$$\log_{36} 42 = \frac{\log_3 42}{\log_3 36} = \frac{\log_3 (2 \times 3 \times 7)}{\log_3 (2^2 \times 3^2)}$$

$$= \frac{\log_3 2 + 1 + \log_3 7}{2\log_3 2 + 2}$$

$$\frac{\frac{1}{a} + 1 + b}{2 \cdot \frac{1}{a} + 2} = \frac{1 + a + ab}{2(1 + a)}$$