1. 다음 보기 중 다각형인 것인 것의 개수는?

보기

① 삼각형 © 원 © 정사면체

@ 子

② 오각형

① 1 개 ② 2 개 ③ 3 개 ④ 4 개 ⑤ 5 개

해설 다각형은 세 개 이상의 선분으로 둘러싸인 평면도형이므로 ①, ② 2 개이다. 2. 다음 중 한 꼭짓점에서 그을 수 있는 대각선의 개수가 7 개인 다각형은?

② 칠각형

⑤ 십각형

③ 팔각형

구하는 다각형을 n 각형이라 하면

따라서 구하는 다각형은 십각형이다.

n-3=7 : n=10

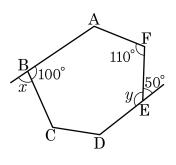
육각형

④ 구각형

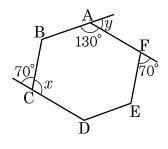
① 6 개 ② 7 개 ③ 8 개 ④ 9 개 ⑤ 10 개

10 - 2 = 8

- 4. 다음과 같은 특징을 가지는 다각형의 대각선의 총수는?
 - ⊙ 10 개의 내각을 가지고 있다.
 - ⓒ 한 꼭짓점에서 그을 수 있는 대각선의 수는 7 개이다.
 - ① 25개 ② 28개 ③ 32개 ④ 35개 ⑤ 38개


선의 수가 7 개인 다각형은 십각형이다. 십각형의 대각선의 총수는 $\frac{10(10-3)}{2} = 35(개)$ 5. 어떤 다각형의 내부의 한 점에서 각 꼭짓점에 선분을 그었을 때 생기는 삼각형의 개수가 9 개인 다각형을 구하여라.

답:


▷ 정답: 구각형

n 각형의 내부의 한 점에서 각 꼭짓점에 선분을 그었을 때 생기는 삼각형의 개수는 n개이므로 구하는 다각형은 구각형이다.

6. 다음 그림의 육각형에서 $\angle x + \angle y$ 의 크기를 구하여라.

7. 다음 그림의 육각형에서 $\angle x - \angle y$ 의 크기를 구하여라.

$$\angle x = 180^{\circ} - 70^{\circ} = 110^{\circ}$$

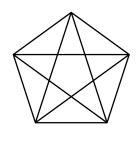
 $\angle y = 180^{\circ} - 130^{\circ} = 50^{\circ}$
 $\angle x - \angle y = 110^{\circ} - 50^{\circ} = 60^{\circ}$

다각형은? 육각형 ② 정육각형 ③ 팔각형

12 개의 내각의 크기가 모두 같고, 12 개의 변의 길이가 모두 같은

⑤ 정십이각형

④ 십이각형

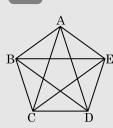

해설 변의 길이가 모두 같고. 내각의 크기가 모두 같은 다각형을 정다 각형이라고 한다. 변과 내각이 모두 12 개이므로 정십이각형이다.

- 9. 다음 설명 중 옳은 것을 모두 고르면?
 - ① 한 꼭짓점에 대하여 외각은 2 개 있는데, 이 두 외각은 그 크기가 서로 같다.
 - ② 여러 개의 선분으로 둘러싸인 입체도형을 다각형이라고 한다.
 - ③ 정팔각형은 변의 개수와 꼭짓점의 개수가 8 개로 같다.
 - ④ 세 변의 길이가 같은 삼각형은 정삼각형이다.
 - ⑤ 사각형에서 내각의 크기가 모두 같으면 정사각형이다.

해설

- ② 여러 개의 선분으로 둘러싸인 평면도형을 다각형이라고 한다.
- ③ 모든 내각의 크기와 변의 길이가 같은 사각형을 정사각형이라고 한다.

10. 다음 그림과 같이 오각형의 대각선을 그었을 때, 오각형의 꼭짓점들로 만들어지는 삼각형의 개수는 모두 몇 개인지 구하여라.



개

답:

해설

▷ 정답: 10개

꼭짓점을 각각 A, B, C, D, E라 하면 만들어지는 삼각형은 \triangle ABC, \triangle ABD, \triangle ABE, \triangle ACD, \triangle ACE, \triangle ADE, \triangle BCD, \triangle BCE, \triangle CDE의 모두 10 개이다.

11. 구각형의 대각선의 총수를 a개 , 육각형의 한 꼭짓점에서 그을 수 있는 대각선의 개수를 b개라 할 때, a+b 의 값은?

$$n$$
 각형의 대각선의 총 개수는 $\frac{1}{2}n(n-3)$ 개이므로,

$$\therefore a = \frac{1}{2} \times 9 \times (9-3) = 27$$

$$n$$
 각형에서 한 꼭짓점에서 그을 수 있는 대각선의 개수는 $(n-3)$

개이므로.

b = 6 - 3 = 3 a + b = 27 + 3 = 30

12. 다음은 이십각형의 대각선의 총수를 구하는 과정이다. y - (x + z) 의 값을 구하여라.

이십각형의 대각선의 총수를 구할 때, 한 꼭짓점에서 그을 수 있는 대각선은 (x)개 이고, 각 꼭짓점에서 그을 수 있는 대각선은 모두 (y)개이다. 그런데 이 개수는 한 대각선은 2 번씩계산한 것이므로 2 로 나누어야한다. 그러면 대각선의 개수는 (z) 개이다.

$$x = 20 - 3 = 17$$
$$y = 17 \times 20 = 340$$
$$z = \frac{340}{2} = 170$$

$$\therefore y - (x + z) = 340 - (17 + 170) = 153$$

13. 대각선의 개수가 65 개이고 모든 변의 길이와 모든 내각의 크기가 같은 다각형을 말하여라.

해설 모든 변의 길이와 모든 내각의 크기가 같은 다각형이므로 정
$$n$$
 각형이라 하면
$$\frac{n(n-3)}{2}=65,\ n(n-3)=130$$
 $n(n-3)=13\times 10$ \therefore $n=13$

따라서 n=13 이므로 정십삼각형이다.

14. 다음 그림의 점들 사이의 거리는 모두 일정하다. 이점들을 연결하여 만들 수 있는 정삼각형의 개수를 모두 구하여라. (단, 삼각형 안에 다른 점이 없도록한다.)

개

▷ 정답: 10<u>개</u>

▶ 답:

해설

점들 사이를 수직선을 제외하고 수평선과 사선을 그으면 8 개의 정삼각형이 존재 하는 것을 볼 수 있다. 정삼각형 한 개가 만드는 정삼각형은 8 개, 정삼각형 4 개가 모여 만드는 정삼각형의 수는 2 개임을 알 수 있다. 따라서 총 10 개의 정삼각형이 존재한다.

- 15. 대각선의 총수가 54 개인 다각형의 꼭짓점의 수를 구하면?
 - ① 8 개 ② 9 개 ③ 10 개 ④ 11 개 ⑤ 12 개

해결
$$n$$
 각형이라 하면 $\frac{n(n-3)}{2}=54$ $n(n-3)=108=12\times 9$ $\therefore n=12$ (개)