1에서 20까지의 숫자가 각각 적힌 20장의 카드 중에서 한 장을 뽑았을 때, 6의 배수가 나오는 경우의 수를 구하여라.

답:	<u>가지</u>

2. 한 개의 주사위를 던져 나오는 눈의 수가 2의 배수이거나 또는 3의 배수가 나오는 경우의 수를 구하여라.

답:		<u> 가지</u>
▷ 정답 :	4가지	

해설 2의 배수가 나오는 경우는 2, 4, 6으로 3가지이고, 3의 배수가 나오는 경우는 3, 6으로 2가지 이다. 따라서 경우의 수는 4 가지이다. 3. 미희네 마을에서 미희네 할머니가 계시는 마을까지 하루에 버스가 5회, 기차는 3회 왕복한다고 한다. 미희가 할머니 댁에 갔다 오는 방법은 모두 몇 가지인지 구하여라.

가지

답:▷ 정답: 64 가지

해설 ____

할머니 댁에 가는 방법은 5+3=8(가지)이다. 그러므로 왕복하는 방법은 $8\times 8=64($ 가지)이다.

동전 두 개를 동시에 던질 때, 서로 같은 면이 나올 경우의 수는? ① 1가지 ② 2가지 ③ 3가지 ④ 4가지 ⑤ 5가지

(앞, 앞), (뒤, 뒤) 의 2가지

정할 때, B가 세 번째 달리도록 순서를 정하는 방법은 모두 몇 가지인가?
① 6가지 ② 8가지 ③ 12가지

⑤ 30가지

A, B, C, D, E의 다섯 명의 계주 선수가 400 m를 달리는 순서를

5.

④ 24 가지

해설 B를 세 번째에 고정하고, 나머지 A, C, D, E를 한 줄로 세우는 경우의 수는 $4 \times 3 \times 2 \times 1 = 24$ (가지) 6. 남학생 3명과 여학생 5명이 있다. 이 중에서 남학생과 여학생을 각각 한 명씩 뽑는 방법의 수는?

② 8가지

⑤ 30가지

③ 15가지

해설____

해설 남학생 1명을 뽑는 경우의 수: 3가지 여학생 1명을 뽑는 경우의 수: 5가지 ::3×5 = 15(가지)

① 2가지

④ 24가지

7. 남학생 5명과 여학생 5명으로 구성된 조에서 대표 2명을 뽑으려고 할때의 경우의 수는?

③ 25가지

② 20가지

16가지

해설 $10 \ \mbox{ੳ 중에서 대표 } 2 \ \mbox{ੳ 뽑는 경우의 } \ \mbox{$\dot{\Gamma}$} : \ \frac{10 \times 9}{2} = 45 \ (\mbox{\rown})$

주머니 속에 푸른 구슬이 5개, 붉은 구슬이 3개 들어 있다. 이 주머니 에서 한 개의 구슬을 꺼낼 때, 검정 구슬이 나올 확률은?

$$\bigcirc 0$$

②
$$\frac{1}{2}$$
 ③ $\frac{1}{3}$

$$3\frac{1}{3}$$

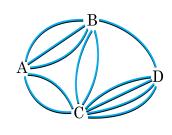
$$4 \frac{2}{5}$$

검은 구슬은 하나도 없으므로 구하는 확률은 $\frac{0}{8} = 0$ 이다.

9. 주사위 두 개를 동시에 던졌을 때, 어느 쪽이든 4의 눈이 나오는 경우의수는?

(3) 18

(4) 12


 \bigcirc 24

(2) 20

해설 어느 쪽이든 4의 눈이 나오는 경우는 (1, 4), (2, 4), (3, 4), (4, 4), (5, 4), (6, 4), (4, 1), (4, 2), (4, 3), (4, 5), (4, 6)으로 11가지이다. **10.** 경희가 100 원, 50 원, 10 원짜리 동전을 각각 5 개씩 가지고 있다. 이 동전을 사용하여 경희가 300 원을 지불하는 경우의 수를 구하여라.

답:		<u> 가지</u>
▷ 정답 :	6가지	

11. A, B, C, D 네 개의 마을 사이에 다음 그림과 같은 도로망이 있다. 한 마을에서 다른 마을로 이동을 할 때, 이동 방법이 가장 많은 경우의 수와 가장 적은 경우의 수의 합은?

① 2가지

② 3가지

③ 4가지

④5가지

⑤ 6가지

해설

이동 방법이 가장 많은 경우는 C 마을에서 D 마을로 이동하는 경우로 4가지이며, 이동 방법이 가장 적은 경우는 B 마을에서 D 마을로 이동하는 경우로 1가지이다. 따라서 두 경우의 수의 합은 5가지이다. **12.** 다음은 우리나라 지도의 일부이다. 6개의 도(⋈)를 서로 다른 4가지의 색연필로 칠을 하여 도(⋈)를 구분하고자 한다. 색칠을 하는 방법의 가지 수를 구하여라.

▷ 정답 : 120 가지

48 + 48 + 24 = 120

해설

▶ 답:

충북(A) → 경북(B) → 강원(C) → 경기(D) → 충남(E) → 전북(F) 순으로 생각을 한다면 마지막 F에 색칠할 수 있는 경우의 수는 B와 E의 색이 같을 때와 다를 때로 나눌 수 있다. 따라서,

- (1) B = E일 때, $ABCDEF \rightarrow 4 \times 3 \times 2 \times 1 \times 1 \times 2 = 48$ (2) B와 E가 다를 때, (두가지 경우로 또 나뉜다.)
- 1) B = D일 때, $ABCDEF \rightarrow 4 \times 3 \times 2 \times 1 \times 2 \times 1 = 48$
- 2) $B \neq D$ 일 때, $ABCDEF \rightarrow 4 \times 3 \times 2 \times 1 \times 1 \times 1 = 24$

13. 다음 여섯 장의 카드에서 두 장을 뽑아 만들 수 있는 두 자리 자연수는 모두 몇 개인가?

가지

▷ 정답: 21 가지

▶ 답:

해설

첫 자리 숫자가 1일 경우;5가지 첫 자리 숫자가 1이 아닐 경우; 16가지 **14.** 숫자가 적힌 네 장의 카드로 만들 수 있는 세 자리의 정수 중 210 이상 300 이하인 정수의 개수는?

 ① 2개
 ② 3개
 ③ 4개
 ④ 5개
 ⑤ 6개

211, 213, 231이므로 3개이다.

15. 남학생 2 명, 여학생 3 명을 일렬로 세울 때, 남학생은 남학생끼리, 여학생은 여학생끼리 서로 이웃하게 세우는 경우의 수는?

① 12 가지 ② 18 가지 ③ 24 가지 ④ 36 가지 ⑤ 48 가지

해설

남학생들을 묶어서 A, 여학생들을 묶어 B 라고 하면 A, B를 일렬로 세우는 경우는 2 가지이다. 이 때, 남학생들끼리 서로 자리를 바꾸는 방법은 $2 \times 1 = 2$ (가지)이고, 여학생들끼리 서로 자리를 바꾸는 방법은 $3 \times 2 \times 1 = 6$ (가지)이다. 그러므로 구하는 경우의 수는 $2 \times 2 \times 6 = 24$ (가지)이다.

16. 항아리 속에 1에서 50까지의 숫자가 각각 적힌 구슬 50개가 들어있다. 항아리 속에서 구슬 한 개를 꺼낼 때 2의 배수 또는 3의 배수 또는 4 의 배수인 구슬이 나올 경우의 수는 얼마인가?

<u>가지</u>

정답: 33

- 해설

수가 4가지.

가지, 3의 배수가 나오는 경우의 수는 16가지, 4의 배수가 나오는 경우의 수는 12가지, 2와 3의 공배수인 경우의 수가 8가지, 3과 4의 공배수인 경우의

1에서 50까지의 수 중에서 2의 배수가 나오는 경우의 수는 25

2와 4의 공배수인 경우의 수가 12가지, 2 3 4의 공배수인 경우의 수가 4가지이다

2, 3, 4의 공배수인 경우의 수가 4가지이다. 따라서 2의 배수 또는 3의 배수 또는 4의 배수인 구슬이 나오는 경우의 수는 25 + 16 + 12 - 8 - 4 - 12 + 4 = 33(가지)이다.

17.
$$1$$
부터 20 까지의 자연수 중 하나를 뽑아 a 라 할 때, $\frac{16}{a}$ 이 자연수가 될 확률은?

$$a: 1, 2, 4, 8, 16$$
이므로 5가지
구하는 확률: $\frac{5}{20} = \frac{1}{4}$

$$\overline{10}$$

$$4 = 16$$
 (2)

자리 수의 합이

$$\therefore \frac{3+2}{16} = \frac{5}{16}$$

전체 경우의 수: 4×4 = 16 (가지) 자리 수의 합이 3: 12,21,30 이므로 3가지 자리 수의 합이 6: 24.42 이므로 2가지

19. 점 P가 수직선의 원점 위에 놓여 있다. 동전 한 개를 5번 던져 앞면이 나오면 오른쪽으로 1만큼, 뒷면이 나오면 왼쪽으로 1만큼 움직이기로 할 때, 점 P의 위치가 3일 확률은 얼마인가?

 $3\frac{3}{12}$

②
$$\frac{5}{16}$$

 $4) \frac{3}{8}$

모든 경우의 수는 :
$$2^5 = 32$$
(가지)
앞 : a , 뒤 : $5 - a$ 로 놓으면

$$a - (5 - a) = 3$$
에서 $a = 4$ 이나
a가 4일 경우의 수는

(HHHHT), · · · (THHHH): 5가지

$$\therefore \frac{5}{32}$$

20. 주머니 속에 흰 구슬과 보라색 구슬을 합하여 10 개가 있다. 이 중에서 하나를 꺼냈다가 다시 넣은 후 또 하나를 꺼냈을 때, 두 번 중 적어도 한 번은 흰 구슬이 나올 확률은 $\frac{51}{100}$ 이다. 이 때, 보라색 구슬의 수는?

③ 7 개

④ 8 개 ⑤ 9 개

① 5개 ② 6개

두 번 중 적어도 한 번은 흰 구슬이 나오는 사건의 확률이 $\frac{51}{100}$ 이므로 보라색 구슬이 m 개 들어 있다고 할 때, 모두 보라색 구슬이 나올 확률은 $\frac{m}{10} \times \frac{m}{10} = 1 - \frac{51}{100} = \frac{49}{100}$ $\therefore m = 7$ 그러므로 보라색 구슬은 7 개이다.