- 1. 이차함수 $f(x) = x^2 x$ 가 있다. 함수 $f: X \to X$ 가 일대일대응이 되도록 하는 집합 $X 는 X = \{x | x \ge k\}$ 이다. 이 때, k 의 값은 얼마인 가?
 - ① 0 ② 1 ③ 2 ④ 3 ⑤ 4

해설

주어진 함수 $f: X \to X$ 가 일대일대응이려면, (정의역)=(공역)이므로 (정의역)=(치역)이 되어야 한다. 즉, f(k)=k $\therefore k=0$ 또는 k=2 (i)k=0이면 f(0)=f(1)이므로 $f(x)=x^2-x$ 가 일대일대응이 되지 않는다. (ii)k=2 이면 일대일대응이 된다. $\therefore k=2$

- **2.** 집합 $A = \{1, 2, 3\}$ 에 대하여 A에서 A로의 함수 f 중에서 $f(x) = f^{-1}(x)$ 를 만족시키는 것의 개수는?
 - ① 2개 ② 3개 ③ 4개 ④ 6개 ③ 9개

해설 역함수 f^{-1} 가 존재하므로, f는 일대일대응이다.

(i) f(1) = 1일 때,

- $f(2)=2,\ f(3)=3$ 또는 $f(2)=3,\ f(3)=2$ (ii) f(1)=2일 때,
- f(1) = 2 를 떼, $f(2) = f^{-1}(2) = 1$ 이므로 f(3) = 3

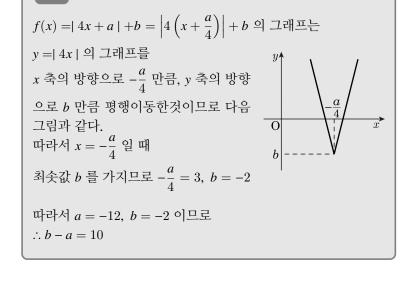
f(2) = f'(2) = (iii) f(1) = 3일 때,

 $f(3)=f^{-1}(3)=1 \, \text{이므로} \, f(2)=2$ (i), (ii), (iii)에서 함수 f의 개수는 4개이다.

(-), (--), (--)

3. 함수 f(x) = |4x + a| + b 는 x = 3 일 때, 최솟값 -2 를 가진다. 이때, 상수 a, b 의 값에 대하여 b - a 의 값을 구하여라.

답:▷ 정답: 10



4. $\frac{x}{5} = \frac{y+4z}{2} = \frac{z}{3} = \frac{-x+2y}{A}$ 에서 A의 값을 구하라.

답:

> 정답: A = -25

 $\frac{-x + 2(y + 4z) - 8 \times z}{-5 + 2 \times 2 - 8 \times 3}$ $= \frac{-x + 2y + 8z - 8z}{-5 + 4 - 24} = \frac{-x + 2y}{-25}$ $\therefore A = -25$

5. 다음 함수의 그래프 중 평행이동에 의하여 $y = \frac{1}{x}$ 의 그래프와 겹치는 것은?

①
$$y = \frac{2x-1}{x-1}$$
 ② $y = \frac{2x}{x-1}$ ③ $y = \frac{2x+1}{x-1}$ ④ $y = \frac{2x+1}{x-1}$

$$y = 2x + 1$$

①
$$y = \frac{2x - 2 + 1}{x - 1} = 2 + \frac{1}{x - 1}$$

② $y = \frac{2x - 2 + 2}{x - 1} = 2 + \frac{2}{x - 1}$

①
$$y = \frac{2x - 2 + 1}{x - 1} = 2 + \frac{1}{x - 1}$$
② $y = \frac{2x - 2 + 2}{x - 1} = 2 + \frac{2}{x - 1}$
③ $y = \frac{2x - 2 + 3}{x - 1} = 2 + \frac{3}{x - 1}$
④ $y = \frac{2x - 1 + 1}{2x - 1} = 1 + \frac{1}{2x - 1}$
⑤ $y = \frac{2x + 1 - 1}{2x + 1} = 1 - \frac{1}{2x + 1}$

$$2x + 1$$
 $2x + 1$ 따라서, ① 의 그래프는 $y = \frac{1}{x}$ 의 그래프를 x 축, y 축 방향으로 각각 1, 2 만큼 평행이동시킨 것이다.

6.
$$\sum_{k=1}^{200} \frac{1}{k(k+1)} \stackrel{\text{ol}}{=} \frac{\text{co}}{2}$$
?

①
$$\frac{101}{100}$$
 ② $\frac{100}{101}$ ③ $\frac{200}{201}$ ④ $\frac{110}{101}$ ⑤ $\frac{201}{200}$

지원
$$\frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}$$
이므로
$$\sum_{k=1}^{200} \frac{1}{k(k+1)} = \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{199} - \frac{1}{200}\right) + \left(\frac{1}{200} - \frac{1}{201}\right)$$
$$= \frac{1}{1} - \frac{1}{201} = \frac{200}{201}$$

7. 다음 중 옳지 <u>않은</u> 것은?

- ① -3은 -27의 세제곱근이다.
- ② 81의 네제곱근은 3, -3, 3*i*, -3*i* 이다. $3 - \sqrt[4]{81} = -3$
- $\sqrt[4]{-16} = -2$

해설

 $\sqrt[3]{-64} = -4$

④ (-2)⁴ = 16 이므로 ∜-16 = ± - 2

- **8.** $a = 4^3$ 일 때, 8^9 을 a에 관한 식으로 나타내면?
 - ① a^2 ② $a^{\frac{5}{2}}$ ③ a^3 ④ $a^{\frac{7}{2}}$ ⑤ $a^{\frac{9}{2}}$

해설 $a = 4^3 = (2^2)^3 = 2^6 \quad \therefore \quad 2 = a^{\frac{1}{6}}$ $8^9 = (2^3)^9 = 2^{27} = (a^{\frac{1}{6}})^{27} = a^{\frac{27}{6}} = a^{\frac{9}{2}}$

- 9. 전체집합 $U=\{3, 6, 9, 12, 15, 18, 21\}$ 의 두 부분집합 $A=\{3, 9, 15, 21\}$, $B=\{12, 15, 18, 21\}$ 에 대하여 연산 $A \triangle B=(A \cup B) (A \cap B)$ 로 정의할 때, $(A \triangle B) \triangle B^c$ 을 나타낸 것은?
 - ③ {3, 15, 21}

① {3, 6, 12}

② {3, 12, 18}

(5, 10, 21) (5) {6, 12, 15, 18} **4** {6, 12, 18}

 $A \triangle B = (A \cup B) - (A \cap B)$

 $= \{3, 9, 12, 15, 18, 21\} - \{15, 21\}$ $= \{3, 9, 12, 18\}$

 $= \{3, 6, 9, 12, 18\} - \{3, 9\}$ $= \{6, 12, 18\}$

 $\therefore (A \triangle B) \triangle B^c = \{3, 9, 12, 18\} \triangle \{3, 6, 9\}$

- 10. 집합 $X = \{-2, 0, 2\}, Y = \{-3, -1, 0, 1, 3\}$ 가 있다. X에서 Y로의 함수 $f: X \to Y$ 중에서f(-x) = -f(x)를 만족하는 함수 f의 개수는?
 - ① 2 가지
- ② 3 가지 ⑤ 6 가지
- ③ 4 가지
- ④5 가지

 $f(0)=-f(0) 에서 \ f(0)=0 \ \mathrm{이고},$

해설

- 1) f(-2) = -3, f(2) = 3
- 2) f(-2) = -1, f(2) = 1
- 3) f(-2) = 0, f(2) = 0
- 4) f(-2) = 1, f(2) = -1
- 5) f(-2) = 3, f(2) = -3따라서 5 가지이다.

- 11. 함수 f(x)=ax+b $(a\neq 0)$ 가 x의 모든 값에 대하여 $f\circ f=f$ 가 성립하도록 상수 a, b의 값을 정하면?
 - ① a = 1 , b = 0 ② a = 1 , b = 1 ③ a = 2 , b = 0① a = 2, b = 1 ③ a = 3, b = 0

 $(f \circ f)(x) = f(f(x)) = f(ax + b)$ $=a(ax+b)+b=a^2x+ab+b$ 이므로

x 의 모든 값에 대하여 $f \circ f = f$ 가 성립하려면 $a^2x + ab + b = ax + b$ 가 x 에 대한

항등식이 되어야 한다. 따라서 $a^2 = a \cdots ①$,

 $ab + b = b \cdots ②$ 가 되어야 한다.

해설

①에서 a=0 또는 a=1

②에서 ab = 0 이므로 a = 0 또는 b = 0그런데 $a \neq 0$ 이므로 a = 1 이고 b = 0

- **12.** 일차함수 f(x) = ax + b 에 대하여 f(1) = 5 , $f^{-1}(7) = 2$ 가 성립할 때, a b 의 값을 구하면?(단, f^{-1} 은 f 의 역함수이고, a, b 는 상수)
 - ① 3 ② 2 ③ 1 ④ 0 ⑤

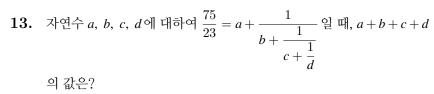
f(1) = 5에서 $a+b=5 \cdots$ ①

 $f^{-1}(7) = 2 \Leftrightarrow f(2) = 7 에서$

 $2a + b = 7 \cdots ②$

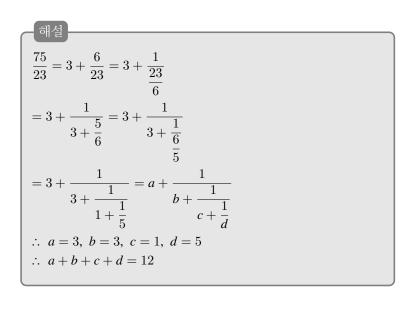
①, ②를 연립하면 a = 2, b = 3∴ a - b = -1

해설



① 8

② 10 ③ 12 ④ 14 ⑤ 16



14. 함수 $y = \frac{ax+b}{2x+c}$ 가 점 (1,2)를 지나고 점근선이 x = 2, y = 1일 때, a+b+c의 값은?

① -8 ② -6 ③ -4 ④ -2 ⑤ 0

점근선이 x = 2, y = 1이므로 $y = \frac{ax + b}{2x + c} = \frac{k}{x - 2} + 1$ 또 점 (1, 2)를 지나므로 $2 = \frac{k}{1-2} + 1 : k = -1$ $\therefore y = \frac{ax+b}{2x+c} = \frac{-1}{x-2} + 1 = \frac{x-3}{x-2} = \frac{2x-6}{2x-4}$ $\therefore a = 2, b = -6, c = -4$

 $\therefore a + b + c = -8$

15. 50과 100 사이의 자연수 중 3의 배수의 총합은?

① 1176 ② 1200 ③ 1225 ④ 1275 ⑤ 1300

해설 $50 \sim 100 \text{ 사이의 } 3 \text{ 의 배수는}$ 51 에서 시작하여 99 로 끝나는공차가 3 인 등차수열이므로 $\frac{(33-17+1)(51+99)}{2}$ $=\frac{17\cdot 150}{2}=1275$

- **16.** 0이 아닌 다섯 개의 수 a, b, c, d, e에 대하여 a, b, c는 이 순서로 조화수열을, b, c, d는 이 순서로 등비수열을, c, d, e는 이 순서로 등차수열을 이룰 때, 다음 중 옳은 것은?

 - \bigcirc a, c, e는 이 순서로 등비수열을 이룬다.

① a, c, e는 이 순서로 등차수열을 이룬다.

- ③ a, c, e는 이 순서로 조화수열을 이룬다.
- ④ a, e, c는 이 순서로 등차수열을 이룬다.
- ⑤ a, e, c는 이 순서로 등비수열을 이룬다.

b는 a와 c의 조화중항이므로 $b=\frac{2ac}{a+c}\cdots$ \bigcirc

c는 b와 d의 등비중항이므로 $c^2 = bc \cdots$ \bigcirc d는 c와 e의 등차중항이므로 $d=\frac{c+e}{2}\cdots$ ©

⊙, ᠍ ⓒ ⓒ에 대입하면 $c^2 = \frac{2ac}{a+c} \times \frac{c+e}{2}, \ c^2 = \frac{ac(c+e)}{a+c}$

 $c = \frac{a(c+e)}{a+c}$, $ac+c^2 = ac+ae$:: $c^2 = ae$ 따라서, a, c, e는 이 순서로 등비수열을 이룬다.

- 17. 공비가 $-\sqrt{2}$ 인 등비수열 $\{a_n\}$ 에서 $a_1+a_2+a_3+a_4=-30$ 일 때, $a_1+a_2+a_3+\cdots+a_8$ 의 값은?
 - ① -120 ② -135
 - ③-150
- **④** −165
- ⑤ -180

해설 + 수열 $\{a_n\}$ 은 공비가 $-\sqrt{2}$ 인 등비수열이므로 첫째항을 a, 공비를

r이라 하면 $a_1 + a_2 + a_3 + a_4 = a + ar + ar^2 + ar^3 = -30$

 $a_5 + a_6 + a_7 + a_8 = ar^4 + ar^5 + ar^6 + ar^7$

 $= r^4(a + ar + ar^2 + ar^3)$

 $\begin{vmatrix} = 4 \times (-30) = -120 \\ \therefore a_1 + a_2 + a_3 + \dots + a_8 = -30 + (-120) = -150 \end{vmatrix}$

$$\frac{n(n+1)(n+2)}{3}$$

$$\frac{n(n+1)(n+2)(n+3)}{3}$$

①
$$\frac{n(n+1)}{2}$$
 ② $\frac{n(n-1)}{3}$ ③ $\frac{n(n+1)(n+2)}{3}$ ③ $\frac{n(n+1)(n+2)(n+3)}{3}$

 $= \left\{\frac{n(n+1)}{2}\right\}^2 + 3 \times \frac{n(n+1)(2n+1)}{6} + 2 \times \frac{n(n+1)}{2}$

 $= \frac{n(n+1)\left\{n(n+1) + 2(2n+1) + 4\right\}}{4}$ $= \frac{n(n+1)(n^2 + 5n + 6)}{4}$ $= \frac{n(n+1)(n+2)(n+3)}{4}$ 따라서 이 식에서 n 대신 n-1을 대입하면

 $\sum_{k=1}^{n-1} k(k+1)(k+2) = \frac{n(n-1)(n+1)(n+2)}{4}$

18. $\sum_{k=1}^{n-1} k(k+1)(k+2)$ 를 n에 관한 식으로 나타내면?

 $\sum_{k=1}^{n} k(k+1)(k+2)$ = $\sum_{k=1}^{n} (k^3 + 3k^2 + 2k)$

① 1310 ② 1320 ③ 1330 ④ 1340 ⑤ 1350

해설 $1 \cdot 19 + 2 \cdot 18 + 3 \cdot 17 + \dots 19 \cdot 1$ $= 1 \cdot (20 - 1) + 2 \cdot (20 - 2) + 3 \cdot (20 - 3) + \dots + 19 \cdot (20 - 19)$ $= \sum_{k=1}^{19} k(20 - k) = \sum_{k=1}^{19} (20k - k^2)$ $= 20 \times \frac{19 \cdot 20}{2} - \frac{19 \cdot 20 \cdot 39}{6}$ = 190(20 - 13) = 1330

20.
$$\sum_{k=1}^{15} \log_2 \left(1 + \frac{1}{k}\right)$$
의 값은?

- ① $\log_2 3$ ④ 3
- $\Im \log_2 30$
- 4
- (3)4

$$\sum_{k=1}^{15} \log_2 \left(1 + \frac{1}{k} \right) = \sum_{k=1}^{15} \log_2 \frac{k+1}{k}$$

$$= \sum_{k=1}^{15} \left\{ \log_2(k+1) - \log_2 k \right\}$$

= $(\log_2 2 - \log_2 1) + (\log_2 3 - \log_2 2) + \cdots$
+ $(\log_2 16 - \log_2 15)$

$$+ (\log_2 16 - \log_2 15)$$

$$= \log_2 16 - \log_2 1 = \log_2 2^4 = 4$$

 ${f 21.}~~a_1=1,~a_{n+1}=rac{a_n}{1+a_n}~(n=1,~2,~3,\cdots)$ 으로 정의된 수열 $\{a_n\}$ 의 일반항은?

① $\frac{1}{n}$ ② $\frac{1}{n+1}$ ③ $\frac{1}{n+2}$ ④ $\frac{2}{n}$ ⑤ $\frac{2}{n+1}$

해설 $a_{n+1} = \frac{a_n}{1+a_n}$ 의 양변을 역수로 취하면 $\frac{1}{a_{n+1}} = \frac{1}{a_n} + 1, \ \colongled{\circlearrowleft} -\frac{1}{a_n} = 1$ 따라서 수열 $\left\{\frac{1}{a_n}\right\}$ 은 첫째항이 $\frac{1}{a_1} = 1$ 이고, 공차가 1인 등차 수열이므로 $\frac{1}{a_n} = 1 + (n-1) \cdot 1 = n \quad \therefore a_n = \frac{1}{n}$

22. 다음 상용로그표를 이용하여 $\log \sqrt[3]{0.138}$ 의 소수 부분을 구하여라.
 수
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

				1 -		-	-		-	
1.0	.0000	.0043	.0086	.0128	.0170	.0212	.0253	.0294	.0334	.0374
1.1	.0414	.0453	.0492	.0531	.0569	.0607	.0645	.0682	.0719	.0755
1.2	.0792	.0828	.0864	.0899	.0934	.0969	.1004	.1038	.1072	.1106
1.3	.1139	.1173	.1206	.1239	.1271	.1303	.1335	.1367	.1399	.1430
1.4	.1461	.1492	.1523	.1553	.1584	.1614	.1644	.1673	.1703	.1732

▶ 답: ▷ 정답: 0.7133

상용로그표에서 $\log 1.38 = 0.1399$ 이므로

log $\sqrt[3]{0.138} = \frac{1}{3} \log 0.138 = \frac{1}{3} \log (1.38 \times 10^{-1})$
□ 라 라 서 $= \frac{1}{3} (\log 1.38 - 1) = \frac{1}{3} (0.1399 - 1)$ = -0.2867 = -1 + 0.7133 $\log \sqrt[3]{0.138}$ 의 소수 부분은 0.7133이다.

23. 두 집합 $A = \{x | x \in 10 \text{ 이상 } 15 \text{ 이하의 자연수}\}$, $B = \{x | x \in 12 \text{ 이상 } 18 \text{ 미만의 } 3 \text{ 의 배수}\}$ 에 대하여 다음 조건을 만족하는 집합 X 의 개수를 구하여라.

 $X \subset A, \quad B \subset X, \quad n(X) = 4$

개

▷ 정답: 6<u>개</u>

▶ 답:

 $A = \{10, 11, 12, 13, 14, 15\}$

해설

 $B = \{12, 15\}$

 $X \subset A, B \subset X$ 이므로 $B \subset X \subset A$ {12, 15} $\subset X \subset \{10, 11, 12, 13, 14, 15\}$

집합 X 는 집합 A 의 부분집합 중 원소 12, 15 는 반드시 포함하고

원소의 개수가 4 개인 집합이므로 {10, 11, 12, 15}, {10, 12, 13, 15},

{10, 12, 14, 15}, {11, 12, 13, 15}, {11, 12, 14, 15}, {12, 13, 14, 15}의 6개이다.

24. 다음 중 옳은 것을 모두 골라라.

© $C = \{0\}$ 이면 n(C) = 0

© $A \subset B$ 이면 $n(A) \le n(B)$ ② n(A) = n(B) 이면 A = B

▶ 답:

▶ 답:

▷ 정답: ⑤

▷ 정답: ◎

해설

○ C = {0} 이면 n(C) = 1
 ② A 와 B 집합의 원소 개수가 같아도 원소는 다를 수 있다.

 \bigcirc 4 – 3 = 1

25. 전체집합 $U=\{10,\,20,\,30,\,40,\,50\}$ 의 두 부분집합 $A,\,B$ 가 $A\cup B=U,\,A\cap B=\{30,\,50\}$ 을 만족한다. 집합 $A,\,B$ 의 원소의 합을 각각 $S(A),\,S(B)$ 라고 할 때, S(A)+S(B) 의 값을 구하여라.

답:▷ 정답: 230

20

S(A) + S(B) 의 값을 구하는 것이므로

해설

각 원소를 아무렇게나 배열해도 원소의 합은 같다. ∴ 10 + 20 + 30 + 40 + 50 + (30 + 50) = 230 **26.** 전체집합 U 의 두 부분집합 A,B 에 대하여 다음 연산 과정 중 처음으로 <u>잘못된</u> 곳을 찾아라.

 $B^{c}-A^{c}=B^{c}\cap (A^{c})^{c}=B^{c}\cap A=B-A=(A\cap B)$ $\bigcirc \qquad \qquad \bigcirc \qquad \bigcirc \qquad \bigcirc \qquad \bigcirc \qquad \bigcirc \qquad \bigcirc$

▶ 답:

▷ 정답: ⑤

 $B^c \cap A = A - B$ 이다. 따라서 처음으로 잘못된 곳은 \bigcirc B - A

이다.

27. 다음은 현수네 반 학생 40 명을 대상으로 조사한 내용이다. 보기의 내용 중 옳지 <u>않은</u> 것을 모두 고르면? (정답2개)

> 자장면을 좋아하는 학생 : 22 명 짬뽕을 좋아하는 학생 : 12 명 두 가지 다 좋아하지 않는 학생 : 8 명

② 두 가지를 다 좋아하는 학생은 22 + 12 - 32 = 2 명이다.

① 자장면 또는 짬뽕을 좋아하는 학생은 40 - 8 = 32 명이다.

- ③ 자장면과 짬뽕을 좋아하는 학생들의 집합을 각각 A, B라 하면
- 둘 다 좋아하는 학생들의 집합은 $A \cup B$ 라고 표현 할 수 있다. ④ 자장면 또는 짬뽕을 좋아하는 학생은 전체 학생 수보다 많다.
- ⑤ 자장면을 A, 짬뽕을 B 라 하면 둘 다 좋아하지 않는 학생은 $(A \cup B)^c$ 라고 표현 할 수 있다.
- 해설

③ 자장면과 짬뽕 둘 다 좋아하는 학생의 집합은 $A \cap B$ 이다.

④ $n(A \cup B) \le n(U)$ 이다.

28. 다음은 명제 ' $3m^2 - n^2 = 1$ 을 만족하는 (가)'에 대한 증명에서 중간 부분을 적은 것이다.

... (생략) ... m, n이 정수이고 $3m^2 = n^2 + 1$ 이므로, $n^2 + 1$ 은 3의 배수이다.
한편, 정수 n이 어떤 정수 k에 대하여 n = 3k이면 $n^2 = (3k)^2 = 9k^2 = 3(3k^2)$ n = 3k + 1이면 $n^2 = (3k + 1)^2 = 9k^2 + 6k + 1 = 3(3k^2 + 2k) + 1$ n = 3k + 2 이면 $n^2 = (3k + 2)^2 = 9k^2 + 12k + 4 = 3(3k^2 + 4k + 1) + 1$ 이므로 n^2 을 3으로 나눈 나머지는 0 또는 1이다.
따라서 $n^2 + 1$ 을 3으로 나눈 나머지는 1 또는 2이다.
... (생략) ...

다음 중 위의 (가)에 가장 알맞은 것은?

- m, n 중 적어도 하나는 정수이다.
 m, n 중 어느 것도 정수가 아니다.
- ③ *m*, *n*이 모두 정수인 해가 적어도 하나 있다.
- ④ *m*, *n*이 모두 정수인 해가 오직 하나 있다.
- ⑤ m, n이 모두 정수인 해는 없다.

귀류법을 쓰면 m, n이 정수이고 $3m^2=n^2+1$ 이므로, n^2+1 은

3 의 배수이다. \cdots ① 한편, 정수 n이 어떤 정수 k에 대하여, n=3k이면 $n^2=(3k)^2=9k^2=3(3k^2)$ n=3k+1이면 $n^2=(3k+1)^2=9k^2+6k+1=3(3k^2+2k)+1$ n=3k+2 이면 $n^2=(3k+2)^2=9k^2+12k+4=3(3k^2+4k+1)+1$ 이므로, n^2 을 3으로 나눈 나머지는 0 또는 1이다. 따라서, n^2+1 을 3으로 나눈 나머지는 1 또는 2이다. \cdots ① 그러므로 ①, ①에 의하여 모순이다. 따라서, $3m^2-n^2=1$ 을 만족하는 m, n이 모두 정수인 해는 없다.

- **29.** 세 조건 p, q, r 에 대하여 $\sim p \Rightarrow q, r \Rightarrow \sim q$ 일 때, 조건 p 가 r 이기 위한 필요충분조건이려면 다음 중 어떤 조건이 더 필요한가?

 - ① $p \Rightarrow q$ ② $q \Rightarrow r$
- 1
- 1

 $r \Rightarrow \sim q$ 이므로 $q \Rightarrow \sim r$

 $\sim p\Rightarrow q$ 이고 $q\Rightarrow\sim r$ 이므로 삼단논법에 의하여 $\sim p\Rightarrow\sim r$ $\therefore r\Rightarrow p$ 따라서, $p\Leftrightarrow r$ 가 되려면 $r\Rightarrow p$ 이외에 $p\Rightarrow r$ 가 더 필요하다. **30.** 실수 전체의 집합에서 정의된 함수 f, g가 $f(x) = ax + b, g(x) = 2x^2 + 3x + 1$ 이고, 모든 실수 x에 대하여 $(f \circ g)(x) = (g \circ f)(x)$ 를 만족할 때, $f(1) + f(2) + f(3) + \cdots + f(10)$ 의 값은?(단, $a \neq 0$)

① 60 ② 55 ③ 51 ④ 48 ⑤ 45

해설 $(f \circ g)(x) = f(g(x)) = a(2x^2 + 3x + 1) + b$ $= 2ax^2 + 3ax + a + b \cdot \cdot \cdot \cdot \cdot \cdot \bigcirc$ $(g \circ f)(x) = g(f(x)) = 2(ax + b)^2 + 3(ax + b) + 1$ $= 2a^2x^2 + (4ab + 3a)x + 2b^2 + 3b + 1 \cdot \cdot \cdot \cdot \bigcirc$ 모든 실수 x에 대하여 $\bigcirc = \bigcirc \cap \square$ 로 $2a = 2a^2, \ 3a = 4ab + 3a, \ a + b = 2b^2 + 3b + 1$ 위의 식을 연립하여 풀면 $a = 1, \ b = 0(\because a \neq 0)$ 즉, $f(x) = x \cap \square$ 로 $f(1) + f(2) + f(3) + \dots + f(10)$ $= 1 + 2 + 3 + \dots + 10 = 55$

31. $2 \le x \le 3$ 에서 부등식 $ax + 1 \le \frac{x+1}{x-1} \le bx + 1$ 이 항상 성립할 때, a 의 최댓값과 b 의 최솟값의 합을 구하면?

① $\frac{1}{3}$ ② $\frac{2}{3}$ ③ 1 ④ $\frac{4}{3}$ ⑤ $\frac{5}{3}$

 $y = \frac{x+1}{x-1} = \frac{x-1+2}{x-1} = \frac{2}{x-1} + 1$ 따라서, 분수함수 $y = \frac{x+1}{x-1}$ 의 그래프는 $y = \frac{2}{x}$ 의 그래프를 x 축의 방향으로 x 한 의 장에 관계없이 점 x 한 방향으로 x 한 의 장에 관계없이 점 x 한 방향으로 x 한 의 장에 관계없이 점 x 한 의 장상 성립하려면 다음 그림에서 x 한 상 성립하려면 다음 그림에서 x 한 생물 x 한 의 장에 최댓값은 x 한 의 장이 함께 x 한 의 장이 함께 x 한 의 장이 함께 x 한 의 최댓값은 x 한 의 장이 함께 x 한 의 장이 의 장이 함께 x 한 의 장이 함께 x 한 의 장이 의 장이 되었다.

- **32.** 어떤 관광버스가 갈 때는 $a \, \mathrm{km/h}$ 의 속력으로, 올 때는 $b \, \mathrm{km/h}$ 의 속력으로 운행하였다. 이때, 이 버스가 왕복 운행하는 동안의 평균 속력은?
 - ① $\frac{ab}{a+b}$ ② $\frac{2ab}{a+b}$ ③ $\frac{2b}{2(a+b)}$ ③ $\frac{2(a+b)}{ab}$

버스가 운행하는 두 지점 사이의 거리를 skm 라고 하면 왕복거리는 2skm 이고, 갈 때는 $\frac{s}{a}$ 시간, $\frac{s}{b}$ 시간이 걸리므로 구하는 평균속력을 v라고 하면 $v = \frac{2s}{\frac{s}{a} + \frac{s}{b}} = \frac{2ab}{a+b}$

33. 496으로 나누어떨어지는 세 자리의 자연수의 총합을 구하여라.

답:

▷ 정답: 41400

해설 4 이 *c*

4와 6으로 나누어떨어지는 수는 4와 6의 최소공배수인 12로 나누어떨어지는 수이므로 12n(n은 자연수)의 꼴이다. 이때, $100 \le 12n \le 1000$ 이므로 $8. \times \times \le n \le 83. \times \times$

 $∴ n = 9, 10, 11, \dots, 83$

그런데 n=9일 때, 12n=108,

n = 83일 때, 12n = 996이므로 조건을 만족하는 수는 첫째항이 108, 끝항이 996, 항수가 83 – 8 = 75인 등차수열이다.

따라서 구하는 총합은 $\frac{75(108+996)}{2}=41400$

34. 두 곡선 $y = x^3 + x^2 + 4x$ 와 $y = -x^2 - k$ 가 서로 다른 세 점에서 만나고 그 교점의 x좌표가 등비수열을 이룰 때 k의 값을 구하여라.

▶ 답: ▷ 정답: 8

해설 $x^3 + x^2 + 4x = -x^2 - k$ $x^3 + 2x^2 + 4x + k = 0$ 세 근이 등비수열을 이루므로 a, ar, ar^2 이라 할 수 있다. 삼차방정식의 근과 계수와의 관계에 의하여 $a + ar + ar^2 = -2$ $a \cdot ar + a \cdot ar^2 + ar \cdot ar^2 = 4$ $a \cdot ar \cdot ar^2 = -k$ 이 성립한다. $a(1+r+r^2) = -2$ $a^2r(1+r+r^2) = 4$ $ar \cdot a(a+r=r^2) = 4$ $ar \cdot (-2) = 4, \ ar = -2$ $a = \frac{-2}{r}$ $a^3 r^3 = -k$ 〇旦로 $\left(\frac{-2}{r}\right)^3 r^3 = -k, -8 = -k$ $\therefore k = 8$

- 35. $a_1=5,\ a_{n+1}=rac{na_n}{n+1}(n\geq 1)$ 으로 정의된 수열 $\{a_n\}$ 에 대하여 $rac{1}{a_1}+rac{1}{a_2}+rac{1}{a_3}+\cdots+rac{1}{a_{10}}$ 의 값은?
 - ①11 ② 13 ③ 15 ④ 17 ⑤ 19
 - $a_{n+1} = \frac{na_n}{n+1}$ 의 n 대신에 $1, 2, 3, \dots, n-1$ 을 각각 대입하면
 - $a_2 = \frac{1}{2}a_1$
 - $a_3 = \frac{2}{3}a_2$ $a_4 = \frac{3}{4}a_3$
 - - $\therefore \frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3} + \dots + \frac{1}{a_{10}} = \frac{1}{5} + \frac{2}{5} + \frac{3}{5} + \dots + \frac{10}{5}$ $= \frac{1}{5}(1 + 2 + 3 + \dots + 10) = \frac{1}{5} \cdot 55 = 11$

36. $x = 2^{\frac{2}{3}} + 2^{-\frac{2}{3}}$ 일 때, $x^3 - 3x - 1$ 의 값은?

 $2^{\frac{2}{3}} = a$ 라 하면 $2^{-\frac{2}{3}} = a^{-1}$ $x = a + a^{-1}$ $x^2 = (a + a^{-1})^2 = a^2 + 2aa^{-1} + a^{-2} = a^2 + 2 + a^{-2}$ 이므로 $x^3 - 3x - 1 = x(x^2 - 3) - 1$ $= (a + a^{-1})(a^2 - 1 + a^{-2}) - 1$ $= a^3 + a^{-3} - 1$ $= 2^2 + 2^{-2} - 1$

 $= 4 + \frac{1}{4} - 1 = \frac{13}{4}$

 $x^{3} = (2^{\frac{2}{3}} + 2^{-\frac{2}{3}})^{4}$ $= 2^{2} + 2^{-2} + 3 \cdot 2^{\frac{2}{3}} \cdot 2^{-\frac{2}{3}} (2^{\frac{2}{3}} + 2^{-\frac{2}{3}})$ $= 4 + \frac{1}{4} + 3x$ $\therefore x^{3} - 3x = 4 + \frac{1}{4}$ $\therefore x^{3} - 3x - 1 = \frac{13}{4}$

- **37.** 함수 $f(x)=\frac{a^x-a^{-x}}{a^x+a^{-x}}$ (단, $a\neq 1$ 인 양수)에 대하여 $f(\alpha)=\frac{1}{3},\ f(\beta)=\frac{1}{2}$ 일 때, $f(\alpha+\beta)$ 의 값은?
 - ① $\frac{3}{4}$ ② $\frac{3}{5}$ ③ $\frac{4}{5}$ ④ $\frac{5}{7}$

 $f(\alpha) = \frac{a^{\alpha} - a^{-\alpha}}{a^{\alpha} + a^{-\alpha}} = \frac{1}{3}$ $3a^{\alpha} - 3a^{-\alpha} = a^{\alpha} + a^{-\alpha}$ $\therefore a^{\alpha} = 2a^{-\alpha}$

 $3a^{\alpha} - 3a^{-\alpha} = a^{\alpha} + a^{-\alpha}$ $\therefore a^{\alpha} = 2a^{-\alpha}$ $\mathbb{E}, f(\beta) = \frac{a^{\beta} - a^{-\beta}}{a^{\beta} + a^{-\beta}} = \frac{1}{2}$ $2a^{\beta} - 2a^{-\beta} = a^{\beta} + a^{-\beta} \therefore a^{\beta} = 3a^{-\beta}$ $f(\alpha + \beta) = \frac{a^{\alpha+\beta} - a^{-\alpha-\beta}}{a^{\alpha+\beta} + a^{-\alpha-\beta}}$ $= \frac{a^{\alpha}a^{\beta} - a^{-\alpha}a^{-\beta}}{a^{\alpha}a^{\beta} + a^{-\alpha}a^{-\beta}}$ $= \frac{6a^{-\alpha}a^{-\beta} - a^{-\alpha}a^{-\beta}}{6a^{-\alpha}a^{-\beta} + \alpha^{-\alpha}a^{-\beta}}$ $= \frac{5a^{-\alpha}a^{-\beta}}{7a^{-\alpha}a^{-\beta}} = \frac{5}{7}$

38. 집합 $M = \left\{ \frac{1}{2}, \; \frac{1}{2^2}, \; \frac{1}{2^3}, \cdots, \; \frac{1}{2^{10}} \right\}$ 의 공집합이 아닌 모든 부분집합을

 $S_1,\ S_2,\ \cdots,S_N\ (N=2^{10}-1)$ 이라고 하자. 집합 $S_1,\ S_2,\cdots,\ S_N$ 의 최소 원소들의 합을 구하여라.

답:

➢ 정답: 5

최소 원소가 $\frac{1}{2}$ 인 부분집합의 개수 $\rightarrow 1$ 최소 원소가 $\frac{1}{2^2}$ 인 부분집합의 개수 $\rightarrow 2^1$: 최소 원소가 $\frac{1}{2^{10}}$ 인 부분집합의 개수 $\rightarrow 2^9$ $\therefore \frac{1}{2} \times 1 + \frac{1}{2^2} \times 2^1 + \cdots + \frac{1}{2^{10}} \times 2^9 = 5$

39. 집합 A,B,C 의 원소의 개수는 각각 3 개, 8 개, 10 개이다. $(A-C)\cup(B\cap C^c)=\emptyset$ 를 만족하는 세 집합 A , B , C 에 대하여 n(C-A)+n(C-B)의 값을 구하여라.

 답:

 ▷ 정답:
 5

 $(A-C) \cup (B \cap C^c) = \emptyset \stackrel{\leftharpoonup}{\vdash}$ $A-C = \emptyset, \ B-C = \emptyset \ \to \ A \subset C, \ B \subset C$

 $\therefore n(C-A) + n(C-B) = (10-3) - (10-8) = 5$

40. 전체 50 명인 학급에서 감기에 걸리지 않은 남학생 수는 10 명, 감기에 걸린 남학생 수는 a 명, 감기에 걸린 여학생 수는 b 이다. 남학생과 여학생의 비율이 3 : 2 일 때, 감기에 걸리지 않은 여학생의 수는 최대 몇 명인지 구하여라. 명

▷ 정답: 20명

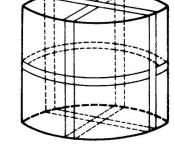
▶ 답:

해설 남학생의 집합을 A , 여학생의 집합을 B , 감기에 걸린 학생의

집합을 C , 감기에 걸리지 않은 학생의 집합을 D 라 두고 표를 그려 보면, 감기에 걸리지 않은 여학생의 수는 (40-a-b) 명이고, $2 \times (10+a) = 3 \times (40-a)$ 이다. $\rightarrow a = 20$

..감기에 걸리지 않은 여학생의 수= 40-20-b 이므로, 최대 20명이다.

41. 길이가 60 cm 인 장식용 테이프를 가지고 원기둥 모양의 선물을 장식하려 한다. 테이프를 3 개로 잘라 아래의 그림과 같이 선물의 표면에 붙여서 장식할 때, 다음은 이 테이프로 장식할 수 있는 선물의 최대부피를 구하는 과정이다. 그런데 아래 풀이 과정은 잘못되었다. 어디에서 잘못이 일어났는가?



선물의 밑면의 반지름의 길이를 r, 높이를 h라 하면 $2 \times 2(2r+h) + 2\pi r = 60 \cdots$ ① 한편, $(산술평균) \ge (기하평균) 이므로 \cdots$ ⑥ $8r + 4h + 2\pi r \ge 3^3 \sqrt{8r \cdot 4h \cdot 2\pi r} \cdots$ ⑥ 즉, $60 \ge 3 \cdot 2 \cdot 2 \cdot 3^3 \sqrt{\pi r^2 h}$ 따라서, $\pi r^2 h \le 125 \cdots$ @ 이상에 의해, 구하려는 최대 부피는 $125 \,\mathrm{cm}^3$ 이다. \cdots @

(5) (1)

해설

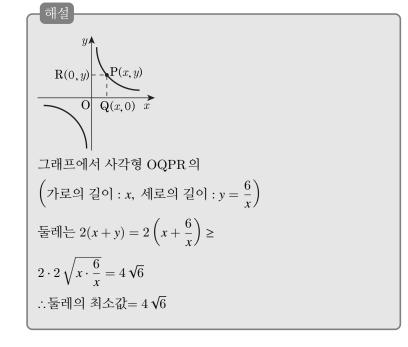
① ① ② © ③ © ④ ②

등호는 $8r = 4h = 2\pi r$ 일 때 성립한다. 그런데 $8 \neq 2\pi$ 이므로 최대 부피는 $125 \,\mathrm{cm}^3$ 가 아니다.

 $8r + 4h + 2\pi r \ 3^3 \sqrt{8r \cdot 4h \cdot 2\pi r}$ 에서

- **42.** 임의의 양수 a, b에 대하여 부등식 $(a+b)^3 \le k(a^3+b^3)$ 이 항상 성립할 때, 실수 k의 최솟값을 구하시오.
 - ① 1 ② 2 ③ 3 ④ 4 ⑤ 6

- **43.** 함수 $y = \frac{6}{x}$ 의 그래프 위의 한 점 P에서 x축과 y축에 내린 수선의 발을 각각 Q, R이라 할 때, 사각형 OQPR의 둘레의 길이의 최소값은? (단, x > 0, O는 원점)
 - ① $6\sqrt{2}$ ② $4\sqrt{6}$ ③ $2\sqrt{6}$ ④ $3\sqrt{2}$ ⑤ $\sqrt{3}$



44. 임의의 자연수에 대하여 함수 f 가 다음 두 조건을 만족할 때, $f(1) + f(2) + f(3) + \cdots + f(2008)$ 의 값은?

(가)
$$f(1) = 1$$
, $f(2) = 2$
(나) $f(x+1) = f(x+2) + f(x)$

① 1 ② 3 ③ 4 ④ 2007 ⑤ 2008

(나)에서 f(x+2) = f(x+1) - f(x) 이므로 f(3) = f(2) - f(1) = 2 - 1 = 1 f(4) = f(3) - f(2) = 1 - 2 = -1 f(5) = f(4) - f(3) = -1 - 1 = -2 f(6) = f(5) - f(4) = -2 - (-1) = -1 f(7) = f(6) - f(5) = -1 - (-2) = 1 f(8) = f(7) - f(6) = 1 - (-1) = 2 :

:
다라서 f(1) = f(7), f(2) = f(8), f(3) = f(9), \cdots , f(x) = f(x+6) 이코 f(1) + f(2) + f(3) + f(4) + f(5) + f(6) = 0 이므로 $f(1) + f(2) + f(3) + \cdots + f(2008)$ $f(1) + f(2) + f(3) + \cdots + f(5) + f(6)$ f(1) + f(2) + f(2006) + f(2007) + f(2008) f(1) + f(2005) + f(2006) + f(2007) + f(2008) f(1) + f(2) + f(2)

45. 집합 $A = \{1, 2, 3, 4\}$ 에 대하여 함수 $f: A \rightarrow A$ 를

$$f(x) = \begin{cases} x-1 \ (x \geq 2) \\ 4 \ (x=1) \end{cases}$$
로 정의한다.
이때, $f^{100}(1) - f^{100}(4)$ 의 값을 구하여라.
(단, $f^{n+1} = f \cdot f^n \ (n=1,2,3,\cdots))$

▶ 답:

▷ 정답: -3

해설 주어진 함수는 2 이상의 숫자는 1을 빼주고,

1은 4로 대응시킴을 의미한다. 다음 그림처럼 f 를 계속 합성하면

4번째에는 모든 원소가 자기자신으로 대응한다.

 $f^{4}(x) = x$ $f^{100}(x) = f^{96}(x) = f^{92}(x) = \dots = f^{4}(x) = x$ $f^{100}(1) - f^{100}(4) = 1 - 4 = -3$

46. 양수 x의 소수 부분을 $y(0 \le y < 1)$ 라 할 때, $x^2 + y^2 = 18$ 에 대하여 xy의 값을 구하면?

①1 ② 2 ③ 3 ④ 4 ⑤ 5

해설

 $y^{2} = 18 - x^{2}, \ 0 \le y < 1$ $0 \le y^{2} < 1, \ 0 \le 18 - x^{2} < 1$ $17 < x^{2} \le 18, \ \sqrt{17} < x \le \sqrt{18}$ $x = 4. \times \times \therefore x - y = 4(0 \le y < 1)$ $x^{2} + y^{2} = (x - y)^{2} + 2xy = 18$ $4^{2} + 2xy = 18 \quad \therefore 2xy = 18 - 16 = 2$ $\therefore xy = 1$

47. 자연수 n에 대하여 $\sqrt{10+\sqrt{n}}+\sqrt{10-\sqrt{n}}$ 이 자연수 k가 될 때, n+k의 값을 구하면?

① 12 ② 22 ③ 32 ④ 42 ⑤ 52

 $\sqrt{10+\sqrt{n}}+\sqrt{10-\sqrt{n}}=k\ (n,\ k$ 는 자연수) 양변을 제곱하면 $10+\sqrt{n}+2\sqrt{100-n}+10-\sqrt{n}=k^2$ $\therefore k^2-20=2\sqrt{100-n}\cdots$ (i) 이때, $0\leq k^2-20<20$ ($\because 0\leq \sqrt{100-n}<10$)이고, k^2-20 은 짝수이므로 k^2 도 짝수이다. $20\leq k^2<40$ 을 만족하는 짝수의 제곱수는 36이므로 $k^2=36$ $\therefore k=6$ (i)에서 n=36 $\therefore n+k=42$

해설

48. 자연수 n에 대하여 상용로그 $\log n$ 의 정수 부분을 f(n)이라 할 때, $f(1) + f(2) + f(3) + \cdots + f(499) + f(500)$ 의 값을 구하여라.

▶ 답:

▷ 정답: 890

(i) $1 \le n < 10$ 일 때, f(n) = 0

해설

(ii) $10 \le n < 100$ 일 때, f(n) = 1

(iii) $100 \le n < 500$ 일 때, f(n) = 2

 $\therefore f(1) + f(2) + f(3) + \dots + f(499) + f(500)$ $=0\times9+1\times90+2\times400$

= 890

49. 2^{2014} 이 n자리의 정수라고 할 때, $\frac{1}{2^{2014}}$ 은 소수점 아래 몇 째 자리에서 처음으로 0이 아닌 수가 나오는가?

② n+1 ③ n-1 ④ 2014 ⑤ 2015

 $\log 2^{2014}$ 의 가수는 0이 아니므로 $\log 2^{2014} = n - 1 + \alpha (0 < \alpha < 1)$ $\log 2^{\frac{1}{2014}} = \log 2^{-2014} = -2014 \log 2$ $=-(n-1+\alpha)$ $= -n + 1 - \alpha(\because 0 < 1 - \alpha < 1)$

 $\log 2^{\frac{1}{2014}}$ 의 지표는 -n, 가수는 $1-\alpha$ 이므로

소수점 아래 n 번째 자리에서 처음으로 0이 아닌 숫자가 나온다.

 ${f 50.}$ $\log 2 = 0.3010, \log 3 = 0.4771$ 일 때, 2^{25} 의 최고 자리의 숫자를 구하 여라.

▶ 답:

➢ 정답: 3

해설

 $\log 2^{25}$ 의 가수를 이용하면 최고 자리의 숫자를 구할 수 있다. $\log 2^{25} = 25 \log 2 = 25 \times 0.3010 = 7.5250$ 이므로

 $\log 2^{25}$ 의 가수는 0.5250이다.

 $\log 2 = 0.3010, \ \log 3 = 0.4771, \ \log 4 = 2 \log 2 = 0.6020$

로 $\log 3 < 0.5250 < \log 4$

 $\therefore 7 + \log 3 < 7.5250 < 7 + \log 4$ $\log(3\times 10^7) < \log 2^{25} < \log(4\times 10^7)$

따라서 $3 \times 10^7 < 2^{25} < 4 \times 10^7$ 이므로 2^{25} 의 최고 자리의 숫자는 3이다.