1. 이차함수 $f(x) = x^2 - x$ 가 있다. 함수 $f: X \to X$ 가 일대일대응이 되도록 하는 집합 X 는 $X = \{x | x \ge k\}$ 이다. 이 때, k 의 값은 얼마인 가?

- ① 0 ② 1 ③ 2 ④ 3 ⑤ 4

2. 집합 $A = \{1, 2, 3\}$ 에 대하여 A에서 A로의 함수 f 중에서 $f(x) = f^{-1}(x)$ 를 만족시키는 것의 개수는?

 ① 2개
 ② 3개
 ③ 4개
 ④ 6개
 ⑤ 9개

3. 함수 f(x) = |4x + a| + b 는 x = 3 일 때, 최솟값 -2 를 가진다. 이때, 상수 a, b 의 값에 대하여 b - a 의 값을 구하여라.

▶ 답: _____

4.
$$\frac{x}{5} = \frac{y+4z}{2} = \frac{z}{3} = \frac{-x+2y}{A}$$
에서 A 의 값을 구하라.

) 답: A = _____

5. 다음 함수의 그래프 중 평행이동에 의하여 $y = \frac{1}{x}$ 의 그래프와 겹치는 것은? ① $y = \frac{2x-1}{x-1}$ ② $y = \frac{2x}{x-1}$ ③ $y = \frac{2x+1}{x-1}$ ④ $y = \frac{2x}{2x-1}$

7. 다음 중 옳지 <u>않은</u> 것은?

- -3은 -27의 세제곱근이다.
 81의 네제곱근은 3, -3, 3i, -3i 이다.
- $3 \sqrt[4]{81} = -3$
- $4\sqrt{-16} = -2$
- $\sqrt[4]{-10} = -2$ $\sqrt[5]{-64} = -4$

8. $a = 4^3$ 일 때, 8^9 을 a에 관한 식으로 나타내면?

① a^2 ② $a^{\frac{5}{2}}$ ③ a^3 ④ $a^{\frac{7}{2}}$ ⑤ $a^{\frac{9}{2}}$

{ 3, 9, 15, 21}, $B = \{12, 15, 18, 21\}$ 에 대하여 연산 $A \triangle B = (A \cup B) - (A \cap B)$ 로 정의할 때, $(A \triangle B) \triangle B^c$ 을 나타낸 것은?

전체집합 $U = \{3, 6, 9, 12, 15, 18, 21\}$ 의 두 부분집합 A =

③ {3, 15, 21}

① {3, 6, 12}

② {3, 12, 18} ④ {6, 12, 18}

⑤ {6, 12, 15, 18}

9.

10. 집합 $X = \{-2, 0, 2\}, Y = \{-3, -1, 0, 1, 3\}$ 가 있다. X에서 Y로의 함수 $f: X \to Y$ 중에서f(-x) = -f(x)를 만족하는 함수 f의 개수는?

④ 5 가지

① 2 가지

- ② 3 가지 ⑤ 6 가지
- ③ 4 가지

0 0 1

© 0 1 1

11. 함수 $f(x) = ax + b \ (a \neq 0)$ 가 x의 모든 값에 대하여 $f \circ f = f$ 가 성립하도록 상수 a, b의 값을 정하면?

 $\textcircled{4} \ a=2 \ , \ b=1 \qquad \textcircled{5} \ a=3 \ , \ b=0$

② a = 1, b = 1 ③ a = 2, b = 0

① a = 1, b = 0

12. 일차함수 f(x) = ax + b 에 대하여 f(1) = 5 , $f^{-1}(7) = 2$ 가 성립할 때, a - b 의 값을 구하면?(단, f^{-1} 은 f 의 역함수이고, a, b 는 상수)

① 3 ② 2 ③ 1 ④ 0 ⑤ -1

13. 자연수 a, b, c, d에 대하여 $\frac{75}{23} = a + \frac{1}{b + \frac{1}{c + \frac{1}{d}}}$ 일 때, a + b + c + d 의 값은?

① 8 ② 10 ③ 12 ④ 14 ⑤ 16

14. 함수 $y = \frac{ax+b}{2x+c}$ 가 점 (1,2)를 지나고 점근선이 x=2,y=1일 때, a+b+c의 값은? ① -8 ② -6 ③ -4 ④ -2 ⑤ 0

15. 50과 100 사이의 자연수 중 3의 배수의 총합은?

① 1176 ② 1200 ③ 1225 ④ 1275 ⑤ 1300

- **16.** 0이 아닌 다섯 개의 수 *a*, *b*, *c*, *d*, *e*에 대하여 *a*, *b*, *c*는 이 순서로 조화수열을, *b*, *c*, *d*는 이 순서로 등비수열을, *c*, *d*, *e*는 이 순서로 등차수열을 이룰 때, 다음 중 옳은 것은?
 - ② a, c, e는 이 순서로 등비수열을 이룬다.

① a, c, e는 이 순서로 등차수열을 이룬다.

- ③ a, c, e는 이 순서로 조화수열을 이룬다.④ a, e, c는 이 순서로 등차수열을 이룬다.
- ⑤ a, e, c는 이 순서로 등비수열을 이룬다.

17. 공비가 $-\sqrt{2}$ 인 등비수열 $\{a_n\}$ 에서 $a_1+a_2+a_3+a_4=-30$ 일 때, $a_1+a_2+a_3+\cdots+a_8$ 의 값은?

① -120 ② -135 ③ -150 ④ -165 ⑤ -180

①
$$\frac{n(n+1)}{2}$$
 ② $\frac{n(n-1)}{3}$ ③ $\frac{n(n+1)(n+2)}{3}$ ④ $\frac{n(n+1)(n+2)(n+3)}{3}$

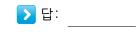
18. $\sum_{k=1}^{n-1} k(k+1)(k+2)$ 를 n에 관한 식으로 나타내면?

19. 1·19+2·18+3·17+···19·1의 값은?

① 1310 ② 1320 ③ 1330 ④ 1340 ⑤ 1350

20. $\sum_{k=1}^{15} \log_2 \left(1 + \frac{1}{k}\right)$ 의 값은?

① $\log_2 3$ ② $\log_2 15$ ③ $\log_2 30$


④ 3 ⑤ 4

 $n \qquad n+1 \qquad n+2 \qquad n \qquad n-1$

22. 다음 상용로그표를 이용하여 log ³√0.138 의 소수 부분을 구하여라.

 주 0 1 2 3 4 5 6 7 8 9

' '	0	1		9	-1	o o	U	'	0	9
1.0	.0000	.0043	.0086	.0128	.0170	.0212	.0253	.0294	.0334	.0374
1.1	.0414	.0453	.0492	.0531	.0569	.0607	.0645	.0682	.0719	.0755
1.2	.0792	.0828	.0864	.0899	.0934	.0969	.1004	.1038	.1072	.1106
1.3	.1139	.1173	.1206	.1239	.1271	.1303	.1335	.1367	.1399	.1430
1.4	.1461	.1492	.1523	.1553	.1584	.1614	.1644	.1673	.1703	.1732

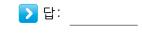
23. 두 집합 $A = \{x | x \in 10 \text{ 이상 } 15 \text{ 이하의 자연수}\}$, $B = \{x | x \in 12 \text{ 이상 } 18 \text{ 미만의 } 3 \text{ 의 배수}\}$ 에 대하여 다음 조건을 만족하는 집합 X 의 개수를 구하여라.

 $X \subset A, \quad B \subset X, \quad n(X) = 4$

답: _____ 개

24. 다음 중 옳은 것을 모두 골라라.

① $A = \{1, 2, 3\}$ 이면 n(A) = 3② $C = \{0\}$ 이면 n(C) = 0


© $A \subset B$ 이면 $n(A) \le n(B)$

© $n(\{1, 2, 3, 4\}) - n(\{1, 2, 3\}) = \{4\}$

> 답: _____

답: _____

25. 전체집합 $U = \{10, 20, 30, 40, 50\}$ 의 두 부분집합 A, B 가 $A \cup B = U,$ $A \cap B = \{30, 50\}$ 을 만족한다. 집합 A, B 의 원소의 합을 각각 S(A), S(B) 라고 할 때, S(A) + S(B) 의 값을 구하여라.

26. 전체집합 U 의 두 부분집합 A,B 에 대하여 다음 연산 과정 중 처음으로 <u>잘못된</u> 곳을 찾아라.

 $B^{C}-A^{C}=B^{C}\cap (A^{C})^{C}=B^{C}\cap A=B-A=(A\cap B)$

▶ 답: _____

27. 다음은 현수네 반 학생 40 명을 대상으로 조사한 내용이다. 보기의 내용 중 옳지 <u>않은</u> 것을 모두 고르면? (정답2개)

자장면을 좋아하는 학생 : 22 명 짬뽕을 좋아하는 학생 : 12 명 두 가지 다 좋아하지 않는 학생 : 8 명

② 두 가지를 다 좋아하는 학생은 22+12-32=2 명이다.

① 자장면 또는 짬뽕을 좋아하는 학생은 40 - 8 = 32 명이다.

- ③ 자장면과 짬뽕을 좋아하는 학생들의 집합을 각각 A, B라 하면
- 둘 다 좋아하는 학생들의 집합은 $A \cup B$ 라고 표현 할 수 있다. ④ 자장면 또는 짬뽕을 좋아하는 학생은 전체 학생 수보다 많다. ⑤ 자장면을 A, 짬뽕을 B라 하면 둘 다 좋아하지 않는 학생은
- $(A \cup B)^c$ 라고 표현 할 수 있다.

28. 다음은 명제 ' $3m^2 - n^2 = 1$ 을 만족하는 (가)'에 대한 증명에서 중간 부분을 적은 것이다.

... (생략) ... m, n이 정수이고 $3m^2 = n^2 + 1$ 이므로, $n^2 + 1$ 은 3의 배수이다.
한편, 정수 n이 어떤 정수 k에 대하여 n = 3k이면 $n^2 = (3k)^2 = 9k^2 = 3(3k^2)$ n = 3k + 1이면 $n^2 = (3k + 1)^2 = 9k^2 + 6k + 1 = 3(3k^2 + 2k) + 1$ n = 3k + 2 이면 $n^2 = (3k + 2)^2 = 9k^2 + 12k + 4 = 3(3k^2 + 4k + 1) + 1$ 이므로 n^2 을 3으로 나눈 나머지는 0 또는 1이다.
따라서 $n^2 + 1$ 을 3으로 나눈 나머지는 1 또는 1이다.

... (생략) ...

① *m*, *n* 중 적어도 하나는 정수이다.

다음 중 위의 (가)에 가장 알맞은 것은?

- ② m, n 중 어느 것도 정수가 아니다.③ m, n이 모두 정수인 해가 적어도 하나 있다.
- ④ m, n이 모두 정수인 해가 오직 하나 있다.
- ⑤ m, n이 모두 정수인 해는 없다.

29. 세 조건 p, q, r 에 대하여 $\sim p \Rightarrow q, r \Rightarrow \sim q$ 일 때, 조건 p 가 r 이기 위한 필요충분조건이려면 다음 중 어떤 조건이 더 필요한가?

① $p \Rightarrow q$ ② $q \Rightarrow r$ ③ $p \Rightarrow r$

30. 실수 전체의 집합에서 정의된 함수 f, g가 f(x) = ax + b, $g(x) = 2x^2 + 3x + 1$ 이고, 모든 실수 x에 대하여 $(f \circ g)(x) = (g \circ f)(x)$ 를 만족할 때, $f(1)+f(2)+f(3)+\cdots+f(10)$ 의 값은?(단, $a\neq 0)$

① 60 ② 55 ③ 51 ④ 48

⑤ 45

31. $2 \le x \le 3$ 에서 부등식 $ax + 1 \le \frac{x+1}{x-1} \le bx + 1$ 이 항상 성립할 때, a 의 최댓값과 b 의 최솟값의 합을 구하면?

① $\frac{1}{3}$ ② $\frac{2}{3}$ ③ 1 ④ $\frac{4}{3}$ ⑤ $\frac{5}{3}$

- ${f 32}$. 어떤 관광버스가 갈 때는 $a\,{
 m km/h}$ 의 속력으로, 올 때는 $b\,{
 m km/h}$ 의 속력으로 운행하였다. 이때, 이 버스가 왕복 운행하는 동안의 평균 속력은? $3 \frac{2b}{2(a+b)}$
 - ① $\frac{ab}{a+b}$ ② $\frac{2ab}{a+b}$ ② $\frac{2(a+b)}{ab}$

33. 4와 6으로 나누어떨어지는 세 자리의 자연수의 총합을 구하여라.

▶ 답: ____

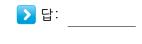
34. 두 곡선 $y = x^3 + x^2 + 4x$ 와 $y = -x^2 - k$ 가 서로 다른 세 점에서 만나고 그 교점의 x좌표가 등비수열을 이룰 때 k의 값을 구하여라.

▶ 답: _____

35. $a_1=5,\ a_{n+1}=\frac{na_n}{n+1}(n\geq 1)$ 으로 정의된 수열 $\{a_n\}$ 에 대하여 $\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+\cdots+\frac{1}{a_{10}}$ 의 값은?

① 11 ② 13 ③ 15 ④ 17 ⑤ 19

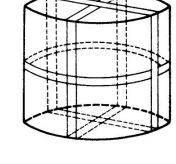
0 --


36. $x = 2^{\frac{2}{3}} + 2^{-\frac{2}{3}}$ 일 때, $x^3 - 3x - 1$ 의 값은? ① $\frac{13}{4}$ ② $\frac{15}{4}$ ③ 4 ④ $\frac{21}{4}$ ⑤ $\frac{25}{4}$

- **37.** 함수 $f(x)=\frac{a^x-a^{-x}}{a^x+a^{-x}}$ (단, $a\neq 1$ 인 양수)에 대하여 $f(\alpha)=\frac{1}{3},\ f(\beta)=\frac{1}{2}$ 일 때, $f(\alpha+\beta)$ 의 값은?
 - ① $\frac{3}{4}$ ② $\frac{3}{5}$ ③ $\frac{4}{5}$ ④ $\frac{5}{7}$ ⑤ $\frac{5}{6}$

38. 집합 $M = \left\{ \frac{1}{2}, \ \frac{1}{2^2}, \ \frac{1}{2^3}, \cdots, \ \frac{1}{2^{10}} \right\}$ 의 공집합이 아닌 모든 부분집합을 $S_1, \ S_2, \cdots, S_N \ (N=2^{10}-1)$ 이라고 하자. 집합 $S_1, \ S_2, \cdots, \ S_N$ 의 최소 원소들의 합을 구하여라.

답: _____


39. 집합 A,B,C 의 원소의 개수는 각각 3 개, 8 개, 10 개이다. $(A-C)\cup(B\cap C^c)=\varnothing$ 를 만족하는 세 집합 A , B , C 에 대하여 n(C-A)+n(C-B)의 값을 구하여라.

40. 전체 50 명인 학급에서 감기에 걸리지 않은 남학생 수는 10 명, 감기에 걸린 남학생 수는 a 명, 감기에 걸린 여학생 수는 b 이다. 남학생과 여학생의 비율이 3:2 일 때, 감기에 걸리지 않은 여학생의 수는 최대 몇 명인지 구하여라.

답: _____ 명

41. 길이가 60 cm 인 장식용 테이프를 가지고 원기둥 모양의 선물을 장식하려 한다. 테이프를 3 개로 잘라 아래의 그림과 같이 선물의 표면에 붙여서 장식할 때, 다음은 이 테이프로 장식할 수 있는 선물의 최대부피를 구하는 과정이다. 그런데 아래 풀이 과정은 잘못되었다. 어디에서 잘못이 일어났는가?

선물의 밑면의 반지름의 길이를 r, 높이를 h라 하면 $2 \times 2(2r+h) + 2\pi r = 60 \cdots$ ① 한편, (산술평균) \geq (기하평균)이므로 \cdots ⑥ $8r + 4h + 2\pi r \geq 3^3 \sqrt{8r \cdot 4h \cdot 2\pi r} \cdots$ ⑥ 즉, $60 \geq 3 \cdot 2 \cdot 2 \cdot 3 \sqrt{\pi r^2 h}$ 따라서, $\pi r^2 h \leq 125 \cdots$ ⑧ 이상에 의해, 구하려는 최대 부피는 $125 \,\mathrm{cm}^3$ 이다. \cdots ⑩

(5) (**D**)

① ① ② 心 ③ ⑤ ④ ②

42. 임의의 양수 a, b에 대하여 부등식 $(a+b)^3 \le k(a^3+b^3)$ 이 항상 성립할 때, 실수 k의 최솟값을 구하시오.

① 1 ② 2 ③ 3 ④ 4 ⑤ 6

- **43.** 함수 $y = \frac{6}{x}$ 의 그래프 위의 한 점 P에서 x축과 y축에 내린 수선의 발을 각각 Q, R이라 할 때, 사각형 OQPR의 둘레의 길이의 최소값은? (단, x > 0, O는 원점)

① $6\sqrt{2}$ ② $4\sqrt{6}$ ③ $2\sqrt{6}$ ④ $3\sqrt{2}$ ⑤ $\sqrt{3}$

 $oldsymbol{44}$. 임의의 자연수에 대하여 함수 f 가 다음 두 조건을 만족할 때, $f(1) + f(2) + f(3) + \cdots + f(2008)$ 의 값은?

(7) f(1) = 1, f(2) = 2

 $(\c \c \c) \ f(x+1) = f(x+2) + f(x)$

① 1 ② 3 ③ 4 ④ 2007 ⑤ 2008

45. 집합 $A = \{1, 2, 3, 4\}$ 에 대하여 함수 $f: A \rightarrow A$ 를

$$f(x) = \begin{cases} x - 1 & (x \ge 2) \\ 4 & (x = 1) \end{cases}$$
로 정의한다.
이때, $f^{100}(1) - f^{100}(4)$ 의 값을 구하여라.
(단, $f^{n+1} = f \cdot f^n \ (n = 1, 2, 3, \cdots))$

답: ____

46. 양수 x의 소수 부분을 $y(0 \le y < 1)$ 라 할 때, $x^2 + y^2 = 18$ 에 대하여 xy의 값을 구하면?

① 1 ② 2 ③ 3 ④ 4 ⑤ 5

47. 자연수 n에 대하여 $\sqrt{10+\sqrt{n}}+\sqrt{10-\sqrt{n}}$ 이 자연수 k가 될 때, n+k의 값을 구하면?

① 12 ② 22 ③ 32 ④ 42 ⑤ 52

48. 자연수 n에 대하여 상용로그 $\log n$ 의 정수 부분을 f(n)이라 할 때, $f(1)+f(2)+f(3)+\cdots+f(499)+f(500)$ 의 값을 구하여라.

답: _____

49. 2^{2014} 이 n자리의 정수라고 할 때, $\frac{1}{2^{2014}}$ 은 소수점 아래 몇 째 자리에서 처음으로 0이 아닌 수가 나오는가?

① n ② n+1 ③ n-1 ④ 2014 ⑤ 2015

50. $\log 2 = 0.3010, \log 3 = 0.4771$ 일 때, 2^{25} 의 최고 자리의 숫자를 구하여라.

답: _____