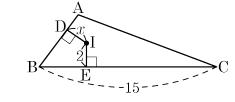
1. 주머니 속에 1000원 짜리, 5000원짜리, 10000원짜리, 50000원짜리 지폐가 각각 한 개씩 들어 있다. 이 주머니에서 꺼낼 수 있는 금액의 경우의 수를 구하여라.


 답:
 <u>가지</u>

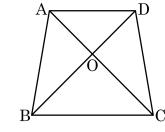
 ▷ 정답:
 15 <u>가지</u>

해설

각 동전마다 나올 수 있는 경우의 수는 2가지씩이므로 2 x

2 × 2 × 2 = 16, 그런데 하나도 안 뽑히는 경우는 빼야하므로 16 - 1 = 15(가지)이다. **2.** 다음 그림에서 점 I가 ΔABC의 내심일 때, x의 값을 구하여라.

▷ 정답: 2


▶ 답:

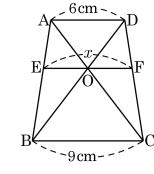
7 01.

삼각형의 내심에서 세 변에 이르는 거리는 같으므로 $x=\overline{ ext{IE}}=2$

이다.

3. 다음 그림에서 □ABCD 는 사다리꼴이다. \triangle ABC = $80 \mathrm{cm}^2$, \triangle DOC = $30 \mathrm{cm}^2$ 일 때, \triangle OBC 의 넓이는?

- ① 20cm^2 ④ 50cm^2
- $2 30 \text{cm}^2$
- $3 40 \text{cm}^2$
- \bigcirc 60cm²


$\overline{\mathrm{AD}}//\overline{\mathrm{BC}}$ 이므로

해설

 $\triangle ABC = \triangle DCB = 80 \text{cm}^2$

 $\therefore \triangle OBC = \triangle DCB - \triangle DOC = 80 - 30 = 50(cm^2)$

4. 다음 그림과 같이 $\overline{AD}//\overline{BC}$ 인 사다리꼴의 대각선의 교점 O 를 지나 \overline{BC} 에 평행한 직선이 \overline{AB} , \overline{DC} 와 만나는 점을 각각 E, F 라고 할 때, \overline{EF} 의 길이는?

④ 7.4cm

① 7.1cm

② 7.2cm ③ 7.5cm

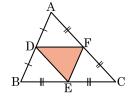
③ 7.3cm

해설

AD//BC 이므로 △AOD ♡ △COB

 $\therefore \overline{AO} : \overline{CO} = \overline{AD} : \overline{CB} = 6 : 9 = 2 : 3$ $\triangle AEO$ $\bigcirc \triangle ABC$ 이므로

 $\overline{AO} : \overline{AC} = \overline{EO} : \overline{BC} = 2 : 5$ $\overline{EO} : 9 = 2 : 5 : \overline{EO} = 3.6 (cm)$


△DOF ∽ △DBC 이므로

 $\overline{OF} : \overline{BC} = \overline{DO} : \overline{DB} = 2 : 5$

 $\overline{\mathrm{OF}}:9=2:5$ $\overline{\mathrm{OF}}=3.6(\mathrm{cm})$

 $\therefore \overline{EF} = \overline{EO} + \overline{OF} = 3.6 + 3.6 = 7.2(cm)$

다음 그림에서 점 D,E,F 는 △ABC 의 세 변 의 중점이다. △ABC = 76 cm² 일 때, △DEF 의 넓이를 구하여라. **5.**

▶ 답: ▷ 정답: 19<u>cm²</u> $\underline{\mathrm{cm}^2}$

 $\triangle ADF = \triangle BED = \triangle CFE = \frac{1}{4}\triangle ABC$ $\therefore \triangle DEF = \frac{1}{4}\triangle ABC$ $= \frac{1}{4} \times 76$ $= 19 (cm^{2})$

6. 다음 중 무리수를 모두 고르면?

 \bigcirc $\sqrt{3}$ \bigcirc $\sqrt{13}$ \bigcirc $\sqrt{2} + \sqrt{9}$

(1)(n), (E), (E) ② ①, 心, ② ③ ∟, ∊, ≥ ④ ⑤, ②, ◎ ⑤ ②, □, ⊞

⊙ √3: 무리수

해설

© √13: 무리수

(c) $\sqrt{2} + \sqrt{9} = \sqrt{2} + 3$: 무리수 (e) $-\sqrt{(-3)^2} = -\sqrt{9} = -3$: 유리수 © $\sqrt{\frac{9}{16}} = \frac{3}{4}$: 유리수

 $ext{(99+1)} = \sqrt{100} : 유리수$

7. $x^2 - 4x + 3$ 과 $2x^2 - 3x - 9$ 의 공통인 인수를 구하여라.

답:

 > 정답:
 x-3

 $x^{2} - 4x + 3 = (x - 3)(x - 1)$ $2x^{2} - 3x - 9 = (2x + 3)(x - 3)$

- 이차방정식 $(x-5)^2-6=0$ 을 풀면? 8.
 - ① $x = 5 \pm \frac{1}{4} x = -1$
- $2x = 5 \pm \sqrt{6}$ $4x = 5 \pm \frac{\sqrt{3}}{2}$
- $3 x = -5 \pm \sqrt{6}$
- ⑤ x = 0 또는 x = 1

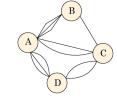
$$(x-5)^2 = 6$$
$$x-5 = \pm \sqrt{6}$$
$$\therefore x = 5 \pm \sqrt{6}$$

- 9. n각형의 대각선의 총수가 $\frac{n(n-3)}{2}$ 개일 때, 대각선이 모두 35 개인 다각형은?
 - ① 육각형 ② 칠각형 ③ 팔각형

해설

④ 구각형⑤ 십각형

 $\frac{n(n-3)}{2} = 35$ $n^2 - 3n - 70 = 0$ $\therefore n = 10(\because n > 0)$


- ${f 10.}~~n$ 명의 학생 중에 2 명의 주번을 뽑는 경우는 ${n(n-1)\over 2}$ 이다. 어느 반 학생 중 주번 2명을 뽑는 경우의 수가 36가지일 때, 이 반의 학생 수는?
 - ① 5명 ② 7명 ③ 9명 ④ 11명 ⑤ 13명

 $\frac{n(n-1)}{2}=36$ 이므로

 $n^2 - n - 72 = 0$

(n-9)(n+8)=0n > 0 이므로 n = 9 (명)이다.

11. 다음 그림과 같이 A, B, C, D 사이에 길이 있을 때, A 에서 D 까지 가는 방법의 수를 구하여라. (단, A, B, C, D 를 두 번 이상 지나가지 않는다.)

<u>가지</u>

▷ 정답: 13 <u>가지</u>

▶ 답:

(1) A ⇒ D: 3 가지

해설

 $(2) A \Rightarrow C \Rightarrow D : 2 \times 2 = 4 (가지)$ $(3) A \Rightarrow B \Rightarrow C \Rightarrow D : 3 \times 1 \times 2 = 4$

(3) A ⇒ B ⇒ C ⇒ D: 3×1×2=6 (가지) 따라서 구하는 경우의 수는 3+4+6=13 (가지)이다.

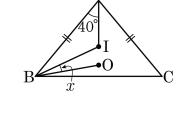
- **12.** A, B, C, D, E다섯 명이 일렬로 설 때 B가 맨 앞에, C는 맨 뒤에 서는 경우의 수는?
 - ① 3가지 ② 4가지 ③ 5가지 ④ 6가지 ⑤ 12가지
 - © 1<u>-</u> 1

해설

B, C의 자리가 고정되어 있으므로 A, D, E를 일렬로 세우는 경우의 수는 $3 \times 2 \times 1 = 6$ (가지)

13. 네 개의 동전을 동시에 던질 때, 앞면이 3 개 또는 4 개 나올 확률은?

모든 경우의 수는 2×2×2×2 = 16 (가지) 앞면이 3 개 나오는 경우는 (앞,앞,앞,뒤), (앞,앞,뒤,앞), (앞,뒤,


앞, 앞), (뒤, 앞, 앞, 앞)의 4 가지이므로 확률은 $\frac{4}{16}$ 이고, 앞면이 4 개 나오는 경우는 (앞, 앞, 앞, 앞)의 1 가지이므로 확률은 $\frac{1}{16}$ 이다. 따라서 구하는 확률은 $\frac{4}{16} + \frac{1}{16} = \frac{5}{16}$ 이다.

10 10 10

- 14. 한 개의 주사위를 세 번 던질 때, 처음에는 홀수의 눈, 두 번째는 소수의 눈, 세 번째는 6 의 약수의 눈이 나올 확률을 구하면?

해설 $\frac{1}{2} \times \frac{1}{2} \times \frac{2}{3} = \frac{1}{6}$

15. 다음 그림에서 I, O 는 $\overline{AB} = \overline{AC}$ 인 이등변삼각형의 내심, 외심일 때 $\angle x$ 의 크기를 구하여라.

▷ 정답: 15 º

답:

 $\frac{1}{2}$ $\angle BOC = \angle A$ 이므로

 $\angle A = 80$ °, $\angle BOC = 160$ °이다.

△ABC의 내심이 점 I일 때,

△ABC 의 외심이 점 O일 때,

 $\frac{1}{2}$ $\angle A + 90$ ° = $\angle BIC$ 이므로 $\angle \mathrm{BIC} = \frac{1}{2} \times 80\,^{\circ} + 90\,^{\circ} = 130\,^{\circ}$ 이다.

 \triangle OBC 도 이등변삼각형이므로 \angle OBC = $10\,^\circ$ 이다. 또, \angle IBC = $\frac{1}{2}$ \angle ABC = $\frac{1}{2}$ \times 50 $^\circ$ = $25\,^\circ$ 이다.

따라서 ∠OBI = ∠IBC - ∠OBC = 25° - 10° = 15°이다.

16. 다음 평행사변형 ABCD 에서 AB = 5 cm, AD = 12 cm 이고, AE는 ∠A의 이 5 cm/ 등분선일 때, EC의 길이를 구하여라.

 $\underline{\mathrm{cm}}$

정답: 7<u>cm</u>

답:

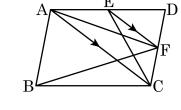
해설

 $\overline{BE} = \overline{AB} = 5 \text{ cm}$ $\therefore \overline{EC} = 12 - 5 = 7 \text{ (cm)}$

 $\angle AEB = \angle EAD = \angle BAE$ 이므로

17. 다음 그림은 마름모 ABCD 의 꼭짓점 A 가 대각선 BD 위에 오도록 접은 것이다.
 ∠BA'P = 124°일 때, ∠A'CD 의 크기를 구 B록하여라.

➢ 정답: 48°


▶ 답:

해설

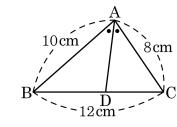
 $\angle {\rm CBA'} = (180\,^{\circ} - 124\,^{\circ}) \div 2 = 28\,^{\circ}$ $\overline{\rm BA'} = \overline{\rm BC}\,$ 이므로 $\angle {\rm BCA'} = (180\,^{\circ} - 28\,^{\circ}) \div 2 = 76\,^{\circ}$

 $\therefore \angle A'CD = 124^{\circ} - 76^{\circ} = 48^{\circ}$

18. 다음 그림의 평행사변형 ABCD에서 \overline{AC} $/\!/\!/\,\overline{EF}$ 이고 ΔBCF 의 넓이가 15cm² 일 때, △ACE 의 넓이는?

 \bigcirc 15cm^2 $\textcircled{4} \ \ 30 \mathrm{cm}^2$

 20cm^2 \bigcirc 35cm²


 $3 \ 25 cm^2$

 $\overline{\mathrm{AB}}\,/\!/\,\overline{\mathrm{DC}}$ 이므로 밑변과 높이가 같아

 $\triangle BCF = \triangle ACF \circ] \mathcal{I},$ $\overline{\mathrm{AC}} /\!/ \overline{\mathrm{EF}}$ 이므로 밑변과 높이가 같아 $\triangle ACF = \triangle ACE$

 $\therefore \ \triangle ACE = 15 (cm^2)$

19. 다음 그림과 같은 $\angle ABC$ 에서 $\angle A$ 의 이등분선이 \overline{BC} 와 만나는 점을 D 라 할 때, $\overline{AB}=10\mathrm{cm}$, $\overline{BC}=12\mathrm{cm}$, $\overline{CA}=8\mathrm{cm}$ 라 한다. 이 때, BD 의 길이는?

- ① $\frac{10}{3}$ cm ② $\frac{13}{3}$ cm ③ $\frac{16}{3}$ cm ③ $\frac{26}{3}$ cm

해설

 $\overline{\mathrm{AB}}: \overline{\mathrm{AC}} = \overline{\mathrm{BD}}: \overline{\mathrm{DC}}$ $10:8 = \overline{BD}: (12 - \overline{BD})$ $8\overline{BD} = 120 - 10\overline{BD}$ $18\overline{BD} = 120$

 $\therefore x = \frac{20}{3} (\text{cm})$

- ${f 20}$. 직사각형 ABCD 에서 점 ${f O}$ 는 ${f BD}$ 의 중점이 고, 점 E는 $\overline{\mathrm{BC}}$ 의 중점이다. $\Delta\mathrm{FBE}=6$ 일 때, 다음 중 바른 것을 모두 고르면?
 - \bigcirc \triangle ABF = 12 \bigcirc OFEC = 12
 - \bigcirc $\triangle FAO = 3$

 ΔABC 에서 점 F 는 무게중심이므로,

해설

 \bigcirc $\triangle FBE = \triangle FAO = 6$ $\textcircled{4} \triangle OCD = 12+6=18$

- **21.** -1 < x < 2 일 때, $\sqrt{(-x-1)^2} \sqrt{(2-x)^2}$ 을 간단히 하면?
 - $4 \ 2x 3$ $3 \ 2x 1$
- - ① -2x-3 ② -2x-1 ③ 3

해설

-1 < x < 2 일 때, -3 < -x - 1 < 0 이고 0 < 2 - x < 3 이므로 ∴ (주어진 식) = |-x - 1| - |2 - x| = -(-x-1) - (2-x)

= x + 1 - 2 + x= 2x - 1

22. $x^2 - y^2 + x + 7y + a$ 가 두 일차식의 곱으로 인수분해될 때, 정수 a 의 값을 구하여라.

▶ 답:

▷ 정답: -12

해설

 $x^{2} - y^{2} + x + 7y + a$ $= (x + y + \alpha) (x - y + \beta)$ $= x^{2} - y^{2} + (\alpha + \beta) x + (\beta - \alpha) y + \alpha\beta$ $\frac{\alpha + \beta = 1}{2\beta = 8}$ $+ \frac{1}{2\beta = 8}$ $\beta = 4, \ \alpha = -3$ $\therefore \ a = \alpha\beta = -12$

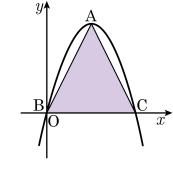
23. $x^2 + ax - 20$ 의 인수 중 하나가 x + 4 일 때, a 의 값은?

① -2

ᆒᄸ

②−1 ③ 0 ④ 1 ⑤ 2

 $x^{2} + ax - 20 = (x+4)(x-5) \quad \therefore a = -1$


24. 이차방정식 $(3x-2)^2 = 5$ 의 두 근의 합을 구하여라.

▶ 답:

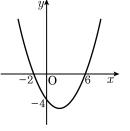
ightharpoonup 정답: $rac{4}{3}$

 $(3x-2)^2 = 5$ $3x-2 = \pm \sqrt{5}$ $3x = 2\pm \sqrt{5}$ $x = \frac{2\pm \sqrt{5}}{3}$ 따라서 두 근의 함은 $\frac{4}{3}$ 이다.

25. 이차함수 $y = -x^2 + 4x$ 의 그래프가 다음 그림과 같을 때, $\triangle ABC$ 의 넓이를 구하면? (점 A 는 꼭짓점)

① 32

② 16


4

⑤ 2

해설

 $y=-(x-2)^2+4$ 에서 $A(2,\ 4)$ 이므로 삼각형의 높이는 4이다. y=x(x-4) 에서 $B(0,\ 0),\ C(4,\ 0)$ 이므로 $\overline{BC}=4$ $\therefore \triangle ABC = \frac{1}{2} \times 4 \times 4 = 8$

- **26.** 이차함수 $y = ax^2 + bx + c$ 의 그래프가 다 음 그림과 같을 때, 이 이차함수의 최솟값을 구하여라.

▶ 답:

ightharpoonup 정답: $-rac{16}{3}$

해설

x 절편이 −2, 6 이므로

y = a(x+2)(x-6)점 (0, -4) 를 지나므로

 $-4 = a(0+2)(0-6), \ a = \frac{1}{3}$ $y = \frac{1}{3}(x+2)(x-6)$ $= \frac{1}{3}x^2 - \frac{4}{3}x - 4$ $= \frac{1}{3}(x-2)^2 - \frac{16}{3}$

따라서 x = 2일 때, 최솟값은 $-\frac{16}{3}$

27. 사격 선수인 진호와 희수가 같은 과녁을 향해 총을 쏘았다. 진호의 명중률은 $\frac{3}{4}$, 희수의 명중률은 $\frac{3}{5}$ 일 때, 과녁이 적어도 하나 이상 명중될 확률을 구하여라.

답:

ightharpoonup 정답: $rac{9}{10}$

해설
$$1 - (두 명 모두 맞히지 못할 확률)$$

$$= 1 - \left(1 - \frac{3}{4}\right) \times \left(1 - \frac{3}{5}\right)$$

$$= 1 - \frac{1}{4} \times \frac{2}{5}$$

$$= \frac{9}{10}$$

28. x, y > 0이고 $3\sqrt{2x} \times \sqrt{3x} \times \sqrt{6} = 126, 2\sqrt{7} \times \sqrt{6} \times \sqrt{3} \times \sqrt{y} = 84$ 일 때, 상수 $\frac{1}{x} \times y$ 의 값을 구하여라.

답:▷ 정답: 2

021

 $3\sqrt{2x} \times \sqrt{3x} \times \sqrt{6} = \sqrt{9 \times 2x \times 3x \times 6}$ $= \sqrt{18 \times 18 \times x^{2}}$ = 18x 18x = 126 $\therefore x = 7$ $2\sqrt{7} \times \sqrt{6} \times \sqrt{3} \times \sqrt{y} = \sqrt{2^{2} \times 7 \times 2 \times 3 \times 3 \times y}$ $= \sqrt{6^{2} \times 14 \times y}$ $= 6\sqrt{14y}$ $6\sqrt{14y} = 84$ $\sqrt{14y} = 14, y = 14$ $\therefore \frac{1}{x} \times y = \frac{1}{7} \times 14 = 2$

- ${f 29}.$ 자연수 n 에 대하여 \sqrt{n} 의 소수 부분을 f(n)이라 할 때, f(175) $2f(28) = a\sqrt{7} + b$ 이다. 이 때, ab 의 값을 구하면?
 - ②-3 ③ -1 ④ 1 ⑤ 3 ① -5

해설 i) $13 < \sqrt{175} = 5\sqrt{7} < 14$ $\therefore f(175) = 5\sqrt{7} - 13$ ii) $5 < \sqrt{28} = 2\sqrt{7} < 6$ $\therefore f(28) = 2\sqrt{7} - 5$ $\therefore f(175) - 2f(28) = 5\sqrt{7} - 13 - 4\sqrt{7} + 10$

 $=\sqrt{7}-3$ $\sqrt{7}-3=a\sqrt{7}+b$ 이므로

a = 1, b = -3

 $\therefore ab = 1 \times (-3) = -3$

30. $2^2 - 6^2 + 10^2 - 14^2 + 18^2 - 22^2 + 26^2 - 30^2$ 을 계산하여라.

▶ 답:

해설

▷ 정답: -512

(준 식) = (2-6)(2+6) + (10-14)(10+14)+(18-22)(18+22)+(26-30)(26+30)

=-4(2+6+10+14+18+22+26+30) $= -4 \times 4 \times 32$

= -512

- **31.** 7x 5 < 4(x + 1)이고 x는 자연수일 때, $x^2 5x + 6 = 0$ 를 풀면?
 - ① x = 0, x = 1 $4 \quad x = 3$ $5 \quad x = -2, \ x = 3$
- ② x = 2 ③ x = 2, x = 3

해설 7x-5 < 4(x+1) 에서 7x-4x < 4+5 , 3x < 9 \therefore x < 3

따라서 x의 값은 1, 2이다. $x^2 - 5x + 6 = 0$ 의 해는 x = 2, x = 3이므로 해는 x = 2가 된다.

- **32.** 이차함수 $y = ax^2 + bx + c$ 의 그래프의 꼭짓점의 좌표가 (2, 3) 일 때, 이 그래프가 제 2 사분면을 지나지 않을 a의 값의 범위는? (단, $a \neq 0$ 임)
- ① $a < -\frac{4}{3}$ ② $a \le -\frac{4}{3}$ ③ $a < \frac{3}{4}$ ④ $a \le -\frac{3}{4}$

a 의 부호에 따라 그래프의 모양이 다르므로 양수인 경우와 음

수인 경우로 나누어 생각해야 한다면 a > 0 이면 항상 제 2 사분면을 지난다. a < 0 이면 y 절편이 양수일 때에는 제 2 사분면을 지나고 y

절편이 음수이거나 0 일 때 제 2 사분면을 지나지 않는다.

꼭짓점이 (2, 3) 이므로 $y = a(x-2)^2 + 3$ 이다.

즉, $y = ax^2 - 4ax + 4a + 3$ 이다. 여기서 y 절편은 4a + 3 이다. $4a + 3 \le 0$

 $\therefore a \le -\frac{3}{4}$

33. 지상 22m 되는 위치에서 초속 30m 로 위로 던져 올린 공의 t 초 후의 높이를 hm 라 하면 $h=-5t^2+30t+22$ 인 관계가 성립한다. 이 공은 몇 초 후에 최고 높이에 도달하는가?

① 1초 ② 2초 ③3초 ④ 4초 ⑤ 5초

 $h = -5(t^2 - 6t + 9 - 9) + 22$ $= -5(t - 3)^2 + 67$

해설

 $= -5(t-3)^2 + 67$ t = 3 일 때, 최댓값 h = 67